ВЛИЯНИЕ СИДЕРАТА, СОЛОМЫ И БИОПРЕПАРАТА БАЙКАЛ ЭМ-1 НА ИНТЕНСИВНОСТЬ БАЛАНСА ЭЛЕМЕНТОВ ПИТАНИЯ В ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИИ ОЗИМОЙ ПШЕНИЦЫ

А.Е. Яшин, аспирант ФГБОУ ВО Ульяновская ГСХА Тел. 8(8422) 55-95-68, agroec@yandex.ru

Ключевые слова: плодородие, баланс, солома, удобрение, почва, микроорганизмы

Установлено, что при возделывании озимой пшеницы с использованием в качестве органического удобрения солому предшественника и сидерат складывается положительный баланс питательных элементов. При применении биологического препарата Байкал ЭМ-1 в системе удобрения интенсивность баланса по азоту, фосфору и калию возрастает.

Возделывание агрокультур нарушает баланс питательных элементов, поскольку значительная их часть ежегодно безвозвратно отчуждается с урожаем. Особое беспокойство вызывает отсутствие приходных статей в виде органических и минеральных удобрений в связи со снижением их использования в сельскохозяйственном производстве [1, 4].

Среди элементов минерального питания растений в первом минимуме находится азот. Решение этой проблемы состоит в увеличении приходных статей баланса азота, из которых наибольшее значение имеют азот минеральных удобрений и биологический азот. При этом биологическая азотфиксация из-за высокой стоимости промышленного азота остается в большинстве случаев основным источником пополнения азотного фонда почвы.

Вопрос о вкладе в азотный баланс почвы несимбиотических азотфиксаторов довольно противоречив. Считается, что в среднем азотобактер может накопить в год на 1 га 10-15 кг азота [2]. Имеются данные

о том, что продуктивность ассоциативной азотфиксации, в естественных фитоценозах зоны умеренного климата, может достигать 100 кг/га, а на сельскохозяйственных угодьях в тех же условиях – всего 10 – 30 кг/га) [3].

Значительно повысить долю биологического азота в почве могут биопрепараты на основе корневых диазотрофов [5]. Так, с использованием стабильного изотопа ¹⁵N было показано, что в случае инокуляции семян препаратами диазотрофов урожайность яровой пшеницы формировалась от 24 до 38 % за счет условно биологического азота в благоприятные и до 15 % — в неблагоприятные по погодным условиям годы [4].

Поэтому целью наших исследований являлся расчет баланса элементов питания при возделывании озимой пшеницы с использованием сидерата, соломы и биопрепарата Байкал ЭМ-1.

Изучение влияния зеленого удобрения и соломы на баланс питательных элементов в технологии возделывания озимой пшеницы проводилось в пятипольном зерновом севообороте с чередованием культур: сидеральный пар (викоовсяная смесь) — озимая пшеница — просо — яровая пшеница — ячмень.

Схема опыта включала 6 вариантов:

1. Без удобрений — абсолютный контроль; 2.Солома предшественника; 3. Солома + $10 \, \text{кг} \, \text{N} / \, \text{т}$ соломы; 4.Солома + биопрепарат; 5. Солома + $10 \, \text{кг} \, \text{N} / \, \text{т}$ соломы + биопрепарат; 6. Биопрепарат.

Почва опытного поля — чернозем типичный среднемощный среднегумусный среднесуглинистый. Агрохимическая характеристика пахотного слоя следующая: содержание гумуса 4,7 % (на момент закладки опыта), обеспеченность подвижным фосфором высокая (196 мг/кг), калием очень высокая (206 мг/кг), реакция почвенного раствора близкая к нейтральной ($pH_{\rm vcl}$ 6,3–6,7).

Полевой опыт закладывался в четырехкратной повторности, посевная площадь делянки 120 м 2 (6×20), учетная – 72 м 2 (4×18), расположение делянок рендомезированное. В качестве органического удобрения в почву заделывали солому и зеленую массу сидеральной культуру (викоовсяная смесь).

Полученные результаты исследований показали, что повышение урожайности озимой пшеницы, а следовательно и содержания азота в биомассе оказало существенное влияние на увеличение выноса элемента урожаем. Общий вынос азота (таблица 1) на контроле был равен 68,2 кг/га, тогда как применение соломы и сидерата способствовало увеличению выноса элемента до 69,2 кг/га.

Таблица 1 – Баланс азота в почве в зависимости от применения сидерата, соломы и биопрепарата, кг/га (2013 – 2014 гг.)

		Вынос азота Поступление азота									
		очвенного	дками				_	мол ляр	ация еку- ного ота		
Вариант	с урожаем	газообразные потери почвенного N	инфильтрация с осадками	всего	с семенами	с осадками	с удобрениями	за счет биопрепарата	свободноживущими азотфиксаторами	всего	Баланс, ±
Контроль	55,2	10	3	68,2	5	5	39,7	-	6	55,7	-12,5
Солома пред- шественника	56,2	10	3	69,2	5	5	48,5	-	6	64,5	-4,7
Солома + 10 кг N/ т соломы	56,3	10	3	69,3	5	5	53	-	6	69,6	- 0,3
Солома + био- препарат	57,9	10	3	70,9	5	5	51,3	13	6	73,3	+4,2
Солома + 10 кг N/ т соломы + биопрепарат	59,9	10	3	72,9	5	5	55,2	13	6	78,2	+5,3
Биопрепарат	57,4	10	3	70,4	5	5	41,8	13	6	64,8	-5,6

Размеры дополнительного выноса азота составили 15-19,5 %. Вынос азота зерном озимой пшеницы при внесении в почву биопрепарата составлял 70,9-72,9 кг/га. На долю газообразных потерь элемента и инфильтрацию приходилось 13 кг/га.

В приходных статьях баланса более высокий удельный вес имело поступление азота с сидератом и соломой (48,5—55,2 кг д.в./га), а также фиксация молекулярного азота микроорганизмами, входящими в состав биопрепарата.

Согласно расчетам, в абсолютном выражении количество дополнительно усвоенного растениями азота в результате прямого или косвенного действия биопрепарата может составлять в среднем 1-1,3 г/ m^2 за вегетацию, или 10-13 кг/га [4].

Таблица 2 — Баланс фосфора в почве в зависимости от применения сидерата, соломы и биопрепарата, кг/га (2013 — 2014 гг.)

Вариант	Вынос фосфора с урожаем	Поступление фосфора с удобрениями	Баланс, ±
Контроль	20,4	20,8	+ 0,4
Солома предше-	24,7	24,8	+ 0,1
Солома + 10 кг N/ т соломы	25,1	25,9	+ 0,8
Солома + биопре-	25,7	26,4	+ 0,7
Солома + 10 кг N/ т соломы + биопрепарат	26,8	28,2	+ 1,4
Биопрепарат	25,7	22,9	- 2,8

Баланс азота на контрольном варианте и на вариантах с отдельным внесением соломы и биопрепарата был отрицательный и составлял от –4,7 до 12,5 кг/га. Однако в вариантах с внесением соломы с азотной добавкой и биопрепаратом баланс азота был положительный. Наиболее высокий баланс по азоту 5,3 кг/га был на варианте с внесением сидерата, соломы с азотной добавкой и биопрепарата.

В отличие от азота, фосфор не имеет естественных источников пополнения запаса в почве. Вынос фосфора с урожаем восполняется практически только за счет внесения фосфорных и органических удобрений. Многие авторы полагают, что при внедрении системы удобрений допускается умеренно отрицательный баланс фосфора, который не изменит уровень плодородия почвы. Установлено, что значительное повышение содержание подвижного фосфора способствует накоплению в урожае культур фосфора и создает конкуренцию поступлению азота.

Результаты исследований (таблица 2) показали, что общий вынос фосфора под влиянием органоминерального удобрения и бактериального препарата увеличивался до 25,7 - 26,8 кг/га, тогда как на контроле 20,4 кг/га.

Таблица 3 – Баланс калия в почве в зависимости от применения сидерата, соломы и биопрепарата, кг/га (2013 – 2014 гг.)

Вариант	Вынос калия с урожаем	Поступление калия с удобре- ниями	Баланс, ±	
Контроль	54,8	54,3	- 0,5	
Солома предше-	55,8	66,3	+ 10,5	
Солома + 10 кг N/ т соломы	57,1	65,3	+ 8,2	
Солома + биопре-	57,9	67,4	+ 9,5	
Солома + 10 кг N/ т соломы + биопрепарат	59,8	78	+ 18,2	
Биопрепарат	57,1	57,2	+ 0,1	

Наибольший вынос фосфора 26,8 кг/га наблюдался на варианте совместного применения соломы с азотной добавкой и биопрепаратом, что выше контроля на 4,4 кг.

В наших исследованиях баланс фосфора складывался почти на всех вариантах положительный и составлял от 0,4 (Контроль) до 1,4 кг/га (Солома + 10 кг N/ т соломы + биопрепарат). На варианте с биопрепаратом без внесения соломы складывался отрицательный баланс (-2,8кг/га).

Общий вынос калия урожаем на контроле составил 54,8 кг/га (таблица 3). Применение сидерата, соломы и биологического препарата способствовало увеличению выноса калия до 55,8 – 59,8 кг/га.

Баланс калия складывался на всех вариантах, за исключением контроля положительный и составлял от 0,1 (Биопрепарат) до 18,2 кг/га (Солома + 10 кг N/ т соломы + биопрепарат).

Использование сидерата, соломы и биопрепарата в системе удобрения озимой пшеницы способствовало значительному изменению интенсивности баланса элементов питания (таблица 4).

Интенсивность баланса по азоту на вариантах с внесением соломы с азотной добавкой и биопрепаратом возрастала и составляла от 100 до

Таблица 4 – Интенсивность баланса элементов питания в почве в зависимости от применения сидерата, соломы и биопрепарата, %

Donusur	Интенсивность баланса					
Вариант	N	Р	К			
Контроль	82	102	99			
Солома предше-	93	100	119			
Солома + 10 кг N/ т соломы	100	103	114			
Солома + био- препарат	103	103	116			
Солома + 10 кг N/ т соломы + био- препарат	107	105	130			
Биопрепарат	92	89	100			

107 %. Наиболее высокая интенсивность баланса по азоту 103% была на варианте с внесением сидерата, соломы с азотной добавкой и биопрепарата.

Интенсивность баланса по фосфору составляла от 89 % (Биопрепарат) до 105 % (Солома + 10 кг N/ т соломы + биопрепарат).

По калию интенсивность баланса составляла от 99 % (Контроль) до 130% (Солома + 10 кг N/ т соломы + биопрепарат).

В целом уровень внесения элементов питания с сидератом и соломой достаточный. При применении биологического препарата Байкал ЭМ-1 баланс является более интенсивным по всем питательным элементам.

Таким образом, применение бактериального препарата Байкал ЭМ-1 в технологии возделывания сельскохозяйственных культур должно сочетаться с использованием органических удобрений.

Библиографический список

1. Куликова, А. Х. Микроэлементы в почвах Ульяновской области и эффективность микроэлементсодержащих удобрений при возделывании озимой

- пшеницы /A. Х. Куликова, Е.А.Черкасов / Вестник Ульяновской государственной сельскохозяйственной академии. 2014. №4. С. 19-25.
- 2. Мишустин, Е.Н. Использование соломы как органического удобрения /Е.Н. Мишустин. М.: Наука, 1980. 270 с.
- 3. Тарасов, С.А. Использование микробиологических препаратов для ускорения деструкции соломы /С.А. Тарасов, О.М. Шершнева / Вестник Курской государственной сельскохозяйственной академии. 2014. № 6. С. 41 45.
- 4. Завалин, А.А. Биопрепараты, удобрения и урожай / А.А. Завалин. М.: Издво ВНИИА, 2005. 302 с.
- 5. Яшин, Е.А. Влияние биокремниевых стимуляторов роста на урожайность зерна озимой пшеницы. /Е.А. Яшин, К.Ч. Шарафутдинова, А.Е.Яшин /Материалы международной научно-практической конференции, посвященной 75-летию доктора сельскохозяйственных наук, профессора, чл.-кор. МААО, академика РАЕН, Заслуженного работника высшей школы РФ Костина Владимира Ильича. Ульяновск, 2014. С. 130-131.

INFLUENCE GREEN MANURE, STRAW AND BIOLOGICAL BAYKAL EM-1 ON THE INTENSITY OF BALANCE BATTERY TECHNOLOGIES THE WINTER WHEAT

Yashin A. E.

Keywords: fertility, balance, straw, manure, soil, microorganisms.

It is established that the cultivation of winter wheat with use as an organic fertilizer and green manure straw precursor formed positive balance of nutrients. When using biological drug Baikal EM-1 in the system of fertilizer intensity balance of nitrogen, phosphorus and potassium increases.