ВЛИЯНИЕ ВНЕКОРНЕВОЙ ПОДКОРМКИ НА ТЕХНОЛОГИЧЕСКИЕ КАЧЕСТВА КОРНЕПЛОДОВ

Ошкин Владимир Александрович, старший научный сотрудник кафедры «Биология, химия, технология хранения и переработки продукции растениеводства»

Костин Владимир Ильич, доктор сельскохозяйственных наук, профессор, заведующий кафедрой «Биология, химия, технология хранения и переработки продукции растениеводства»,

Смирнова Наталья Владимировна, старший преподаватель кафедры «Биология, химия, ТХППР»

ФГБОУ ВО Ульяновская ГСХА

432017, г. Ульяновск, бульвар Новый Венец, 1; тел.: +79084787387, oshkin@yahoo.com

Ключевые слова: сахарная свёкла, микроэлементы,, регуляторы роста растений,, калий, натрий, азот, продуктивность культур, технологические качества.

Результаты исследований показывают, что двукратная внекорневая подкормка нереутилизующимися микроэлементами бором, цинком и марганцем и регулятором роста мелафеном улучшает технологические качества, снижая содержание калия, натрия и альфа-аминного азота, следовательно, увеличивается выход и валовой сбор сахара.

Введение

При переработке корнеплодов сахарной свёклы на заводе технологические качества значительно влияют на величину потерь сахара. Показатель сахаристости не полностью определяет технологические качества свеклосырья, поэтому нужно учитывать также и растворимую часть несахаров.

Основным фактором повышения урожайности и улучшения технологических качеств корнеплодов сахарной свёклы является минеральное питание макро- и микроэлементами.

Установлено, что применение в качестве внекорневой подкормки микроудобрений усиливает процесс образования листьев, увеличивает продолжительность их жизни и замедляет процессы отмирания, в результате увеличивается и продуктивность сахарной свеклы [1, 2, 3, 4].

Применение регуляторов роста является дополнительным фактором, увеличивающим содержание сахарозы, повышающим доброкачественность нормального сока и улучшающим основные технологические качества корнеплодов сахарной свёклы [5, 6, 7, 8, 9, 10].

Цель исследования — анализ технологических качеств сахарной свёклы и потерь сахара в мелассе при внекорневой обработке нереутилизующимися микроэлементами (бор, цинк, марганец) и регулятором роста мелафеном.

Объекты и методы исследований

Опыт проводили в 2012-2015 гг. в свеклосеющем КФХ «Сяпуков Е.Ф.» Цильнинского района Ульяновской области на посевах гибрида Манон.

Внекорневую подкормку микроэлементами и регулятором роста проводили 2 раза за вегетационный период. Первую обработку проводили в фазу 5-6 настоящих листьев в баковой смеси одновременно со вторым опрыскиванием гербицидами, вторую обработку в период формирования корнеплодов. Регулятор роста мелафен применяли в виде водного раствора в концентрации 1.10^{-7} %, микроэлементы – в виде водных растворов их солей: бор (борной кислоты – Н₂ВО₂), цинк (сульфата цинка – ZnSO₄), марганец (сульфата марганца – MnSO₄) в концентрации 0,05%. Повторность вариантов была четырёхкратной на площади делянки 100 м². Почва опытного участка представлена чернозёмом выщелоченным среднемощным среднегумусным среднесуглинистым. Содержание гумуса – 4,8-5,3%, фосфора - 115-160 мг/кг, калия - 140-200 мг/кг. Густота стояния растений находилась на уровне 99,3 тысячи растений на 1 га. Метеорологические условия вегетационных периодов 2012-2015 гг. были различными. Благоприятным по количеству осадков и температурному режиму был 2013 г. – очень влажный, особенно август и сентябрь, когда осадков выпало 2,5 месячные нормы, поэтому и урожайность выше, но с низким содержанием сахарозы. 2014 год был менее благоприятным в начале вегетации и в конце вегетации, т.к. не было осадков. Высокая температура в августе-сентябре способствовала более сильному оттоку сахарозы из листьев, поэтому в 2014 году сахаристость корнеплодов выше по сравнению с 2012 и 2013 годами. В 2015 году в мае-июне выпало осадков меньше нормы, в июле осадков выпало за двухмесячную норму, в августе-сентябре осадков меньше нормы в два раза. Июнь и сентябрь 2015 года были теплее, в отличие от среднемноголетней нормы.

Сахаристость корнеплодов определяли методом горячего водного дигерирования на колориметрическом сахариметре проточном АП-05 в научной лаборатории кафедры «Биология, химия, ТХППР» ФГБОУ ВО Ульяновская ГСХА. Содержание калия и натрия определяли на лабораторном иономере И-160МИ ионселективными электродами ЭЛИС-121К и ЭЛИС-212Nа. Для определения α-аминного азота использовали модифицированный Винингером и Кубадиновым метод Станека и Павласа, который основан на измерении оптической плотности с помощью спектрофотометра ПЭ-5300В.

Стандартные потери сахара при образовании мелассы вычислялись по Брауншвейгской формуле [11]:

СПС = 0,12 · (K + Na) + 0,24 · α -аминоазот + 0,48, (1)

где СПС — стандартные потери сахара, %; К — содержание калия, ммоль на 100 г сырой массы; Nа — содержание натрия, ммоль на 100 г сырой массы; α -аминоазот — содержание альфа-аминоазота, ммоль на 100 г сырой массы.

Содержание очищенного сахара равнялось разнице между сахаристостью и стандартными потерями сахара в мелассе [11]:

$$COC = C - C\Pi C$$
, (2)

где COC – содержание очищенного сахара, %; С – сахаристость, %; СПС – стандартные потери сахара в мелассе, %.

Валовой сбор сахара определялся как произведение урожайности и сахаристости:

BCC =
$$y \cdot C / 100$$
, (3)

где BCC — валовой сбор сахара, т/га; У — урожайность корнеплодов, т/га; С — сахаристость корнеплодов, %.

Валовой сбор очищенного сахара вычислялся по формуле:

$$BCOC = Y \cdot COC / 100, (4)$$

где BCOC – валовой сбор очищенного сахара, т/га; У – урожайность корнеплодов, т/га; COC – содержание очищенного сахара в корнеплодах, %.

Результаты исследований

В проведённом опыте урожайность сахарной свёклы в среднем за четыре года варьи-

Таблица 1 Урожайность и технологические качества корнеплодов сахарной свёклы в среднем за 2012-2015 гг.

Nº	Вариант	Урожайность, т/га	Содержание			
			caxapa, %	К, ммоль на 100 г	Na, ммоль на 100 г	α-аминоазота, ммоль на 100 г
1	Контроль	37,7	16,85	5,46	1,55	5,7543
2	Мелафен	39,8	17,28	4,58	0,86	5,0054
3	Бор	41,8	17,25	5,31	1,43	5,3932
4	Цинк	40,1	16,98	5,29	1,23	5,3397
5	Марганец	40,6	17,00	5,18	1,29	5,2193
6	Бор + Мелафен	43,3	17,70	4,51	0,83	5,0856
7	Цинк + Мелафен	42,7	17,35	4,44	0,81	5,1391
8	Марганец + Мелафен	42,4	17,43	4,39	0,78	5,1257
9	Цинк + Марганец	43,5	17,25	4,88	1,05	4,9251
10	Бор + Цинк	44,3	17,50	5,02	1,21	5,0589
11	Бор + Марганец	44,5	17,55	4,93	1,15	4,9920
12	Цинк + Марганец + Бор	45,0	17,75	4,66	0,91	4,8048
13	Цинк + Марганец + Мелафен	45,4	17,90	3,96	0,74	4,7245
14	Бор + Цинк + Мелафен	46,2	18,08	4,25	0,77	4,6042
15	Бор + Марганец + Мелафен	47,2	18,13	4,04	0,72	4,5909
16	Цинк + Марганец + Бор + Мелафен	47,4	18,40	3,60	0,69	4,4571

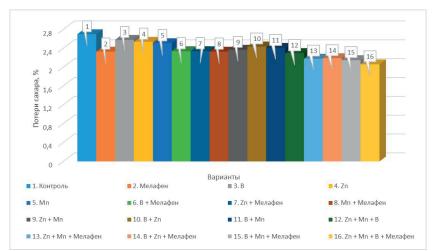


Рис. 1 - Стандартные потери сахара при образовании мелассы в среднем за 2012-2015 гг.

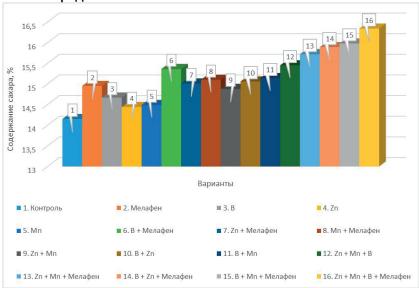


Рис. 2 - Содержание очищенного сахара в корнеплодах в среднем за 2012-2015 гг.

Рис. 3 - Валовый сбор сахара (ВСС) и валовый сбор очищенного сахара (ВСОС) в среднем за 2012-2015 гг.

ровалась от 37,7 т/га (контроль) до 47,4 т/га (бор, цинк, марганец, мелафен) (табл. 1).

Наибольшее содержание сахара в корнеплодах к началу уборки наблюдалось на варианте с совместным внесением микроэлементов и регулятора роста (18,40%), наименьшее — на контроле (16,85%).

К основным показателям технологических качеств относится содержание калия в корнеплодах, который является одним из мелассообразователей [12, 13]. Чем выше этот показатель, тем ниже качество свеклосырья. В наших опытах содержание калия изменялось в зависимости от применяемых микроэлементов и регулятора роста: максимальная величина отмечена на контроле (5,46 ммоль на 100 г сырой массы корнеплодов), а минимальная – в варианте с бором, цинком, марганцем и мелафеном (3,60 ммоль).

Натрий также является мелассообразователем, содержание которого ухудшает экстракцию кристаллизованного сахара [12]. Результаты четырёхлетних исследований выявили наибольшее содержание натрия во все годы исследований на контроле — 1,55 ммоль на 100 г сырой массы, наименьшее — в варианте с микроэлементами и мелафеном — 0,69 ммоль.

Наиболее вредоносным мелассообразователем среди азотных соединений является альфа-аминоазот, играющий отрицательную роль при извлечении сахара [13]. В среднем за четыре года исследования наибольшее содержание альфа-аминоазота в корнеплодах отмечено на контроле (5,75 ммоль на 100 г сырой массы), наименьшее - в варианте с совместным внесением микроэлементов и регулятора роста мелафена (4,46 ммоль) (табл. 1).

Максимальные потери сахара зафиксированы на контроле (2,70%). Они были связаны с высоким содержанием мелассообразующих веществ, особенно калия и альфа-аминоазота. С

внекорневым внесением микроэлементов и

регулятора роста стандартные потери сахара в мелассе уменьшались (рис. 1).

Содержание очищенного сахара в корнеплодах находилось в обратной зависимости со стандартными потерями сахара в мелассе (рис. 2). Высокое содержание отмечалось в варианте с внесением бора, цинка, марганца и мелафена (16,34%), низкое — на контроле (14,15%).

Валовой сбор сахара является одним из интегральных показателей продуктивности сахарной свеклы. При внекорневой обработке микроэлементами и регулятором роста сбор сахара увеличивался и достигал максимальной величины (8,7 т/га) при совместном их внесении (рис.3).

Валовой сбор очищенного сахара — это окончательный объем, получаемый после переработки корнеплодов на сахарном заводе [14]. В среднем за четыре года изучения больше всего очищенного сахара удалось получить в варианте с применением бора, цинка, марганца и мелафена — 7,7 т/га, меньше всего — на контроле — 5,3 т/га.

Выводы

Таким образом, исследования показали, что с внекорневым внесением микроэлементов и регулятора роста растёт урожайность корнеплодов сахарной свеклы. При совместном применении используемых факторов (Zn + Mn + B + Мелафен) этот показатель существенно выше всех остальных вариантов. В то же время внекорневая обработка вызывает уменьшение содержания калия, натрия и альфа-аминоазота в корнеплодах. Стандартные потери сахара в мелассе также уменьшаются с внесением микроэлементов и регулятора роста, в основном за счет низкого содержания калия и альфа-аминоазота.

Валовой сбор сахара в варианте с совместным внесением нереутилизующихся микроэлементов и регулятора роста мелафена составлял 8,7 т/га, на контроле — 6,4 т/га. Оценка продуктивности по валовому сбору очищенного сахара показала, что вариант с применением бора, цинка, марганца и мелафена значительно превосходит контроль, 7,7 т/га и 5,3 т/га соответственно. Полученные результаты позволяют сделать вывод о наиболее продуктивном возделывании сахарной свеклы с двукратным внекорневым внесением растворов борной кислоты, сульфатов цинка и марганца, и регулятора роста мелафена.

Библиографический список

1. Жердецкий, И.Н. Внекорневая подкормка микроудобрениями и площадь ассимиляционного аппарата / И.Н. Жердецкий, В.М. Смир-

- ных // Сахарная свёкла.- 2010.- №3.- С.31-34.
- 2. Жердецкий, И.Н. Площадь листовой поверхности на фоне внекорневых подкормок / И.Н. Жердецкий // Сахарная свёкла. 2010. №5. С. 30-33.
- 3. Карпук, Л.М. Эффективна ли внекорневая подкормка / Л.М. Карпук // Сахарная свёкла.- 2013.- №4.- С.15-17.
- 4. Заришняк, А.С. Роль микроудобрений в повышении продуктивности сахарной свёклы / А.С. Заришняк, О.П. Стрилец // Сахарная свёкла. 2013.- №4.- С.10-12.
- 5. Prospects of use of growth regulators of new generation and microelements-synergists in technology of cultivation of a sugar beet / V.I. Kostin, A.V. Dozorov, V.A. Isaychev, V.A. Oshkin // Proceedings of International scientific and technical Conference named after Leonardo da Vinci. №2. − Berlin: WissenschaftlicheWelte. V., 2014.- P.41-50.
- 6. Костин, В.И. Изучение взаимодействия микроэлементов и мелафена на технологические качества корнеплодов сахарной свёклы / В.И. Костин, В.А. Исайчев, В.А. Ошкин // Вестник Ульяновской государственной сельскохозяйственной академии.- 2014.- №4 (28).- С. 64-69.
- 7. Костин, В.И. Экологическая и биохимическая оценка применения регуляторов роста и микроэлементов в свекловодстве / В.И. Костин, В.А. Ошкин, Е.Е. Сяпуков // Вестник Российской академии естественных наук. 2014. Том 14, №6. С.46-53.
- 8. Костин, В.И. Возможности активации продукционного процесса и повышения засухоустойчивости сахарной свёклы / В.И. Костин, В.А. Ошкин, О.Г. Музурова // Сахарная свёкла. 2014. №10. С. 30-33.
- 9. Внекорневая подкормка сахарной свеклы и качество корнеплодов / В.И. Костин, В.А. Исайчев, В.А. Ошкин, И.Л. Фёдорова // Сахарная свёкла. 2015. №2. С.28-31.
- 10. Сяпуков, Е.Е. О сахарозе корнеплодов и особенностях сахаронакопления / Е.Е. Сяпуков, В.И. Костин, В.А. Ошкин // Сахарная свёкла.- 2015.- №4.- С.34-37.
- 11. Buchholz, K. Neubewertung des technischen Wertes von Zuckerrüben / K. Buchholz. Zuckerind.120, Nr. 2: Saur, 1995.- P.113–121.
- 12. Ионицой, Ю.С. Технологические качества корнеплодов сахарной свёклы современных гибридов / Ю.С. Ионицой // Сахарная свёкла. 2006. №9. С.26–29.
- 13. Hoffmann, C. Zuckerrüben als Rohstoff. Die technische Qualität als Voraussetzung für eine effi ziente Verarbeitung / C. Hoffmann.— Weender Druckerei GmbH &B Co. KG, Göttingen: Saur, 2006. 1. 200s.
- 14. Сахарная свёкла / под ред. Д. Шпаара. – М.: ИД ООО DVL АГРОДЕЛО, 2009. – 390с.