ИСПОЛЬЗОВАНИЕ ГЕНОФОНДА ГОЛШТИНСКОЙ И МОНБЕЛЬЯРДСКОЙ ПОРОД ДЛЯ СОВЕРШЕНСТВОВАНИЯ СИММЕНТАЛЬСКОГО СКОТА

Катмаков Петр Сергеевич, доктор сельскохозяйственных наук, профессор кафедры «Кормление и разведение животных»

Гавриленко Владимир Петрович, доктор сельскохозяйственных наук, профессор кафедры «Кормление и разведение животных»

Бушов Александр Владимирович, доктор биологических наук, профессор кафедры «Кормление и разведение животных»

ФГБОУ ВО Ульяновская ГСХА

432017, г. Ульяновск, бульвар Новый Венец, 1; тел.: 8(8422) 44-30-62; e-mail: ulbiotech@yandex.ru

Ключевые слова: симментальская порода, голштинская порода, монбельярдская порода, генофонд, молочный тип, адаптация, экстерьер, конституция, индекс плодовитости, генотип, сервис-период, индекс вымени.

В работе представлены результаты совершенствования симментальского скота с использованием генофонда голштинской и монбельярдской пород. Установлено, что помеси имеют выраженный молочный тип телосложения.

Введение

В Средневолжском регионе, где скотоводство базируется на использовании в кормлении животных в основном отходов производства зерновых и технических культур, большое значение придается разведению симментальского скота, хорошо адаптированного к этим условиям.

Симментальская порода – комбинированного направления продуктивности, удачно сочетающая показатели молочной и мясной продуктивности. Животные этой породы выносливы, хорошо переносят резкоконтинентальный климат, дают высококачественное молоко, а по мясной продуктивности (энергия роста, убойный выход, масса туши) занимают одно из первых мест. Такие качества симментальской породы, как крепкая конституция, способность потреблять и эффективно использовать отходы сельскохозяйственного производства, длительно сохранять высокую энергию роста, хорошие откормочные качества, позволяют считать симментальский скот важным резервом интенсификации отрасли и увеличения производства молока и говядины.

Вопросам совершенствования симментальской породы скота посвящены работы многих отечественных исследователей [1-9].

В настоящее время в Среднем Повол-

жье ведется целенаправленная работа по созданию высокопродуктивных типов и стад симментальского скота с использованием высокоценных внутрипородных ресурсов и генофонда голштинской породы. В связи с тем, что данный регион входит в зону рискованного земледелия, где природно-климатические условия не позволяют интенсифицировать кормопроизводство, важным научно-техническим вопросом является изучение характера реализации генетического потенциала продуктивности и других хозяйственно-биологических признаков у голштинизированных помесей с разной кровностью по улучшающей породе в созданных условиях.

Объекты и методы исследований

Исследования проводили в стаде симментальской породы скота племзавода «Родина» Вешкаймского района. Объектом исследований были чистопородные животные симментальской породы и помеси, полученные от их скрещивания с быками-производителями монбельярдской и голштинской пород.

В работе по изучению генотипических особенностей животных были использованы данные зоотехнического и племенного учета, бонитировки скота, каталоги быков-производителей ОАО «Ульяновское» по племенной работе.

Основным фоном, на котором изучали биологические особенности, продуктивные и технологические качества чистопородных и помесных животных, были одинаковые условия кормления и содержания. Уровень кормления в эти годы обеспечивал в среднем по хозяйству получение 4000-4500 кг молока на корову. Рационы кормления составляли в соответствии с нормами ВАСХ-НИЛ с учетом живой массы, продуктивности и физиологического состояния животных.

В соответствии с целью работы и поставленными задачами были сформированы 9 групп животных с учетом возраста и кровности по симментальской, монбельярдской и голштинской породам. Экстерьер и конституцию животных оценивали глазомерно, путем взятия промеров и расчета индексов телосложения. Морфологическую оценку вымени проводили на 2-3 мес. лактации за 0,5-1,0 час до доения по методике Ф.Л. Гарькавого [10]. Функциональные свойства вымени изучали по результатам контрольного доения коров. Содержание жира в молоке определяли на приборе «Милкотестер». Воспроизводительную способность коров изучали по данным первичного зоотехнического и племенного учета. Индекс плодовитости рассчитывали по формуле Дохи (1961): Т=100-(К-2і), где К — возраст первого отела в мес., і - средний межотельный период в месяцах.

Цифровые данные, полученные в ходе исследований, обработаны биометрически на персональном компьютере с использованием программ Microsoft Excel по методикам Н.А. Плохинского [11], Е.Н. Меркурьевой [12].

Результаты исследований

Интенсификация скотоводства предъявляет к животным повышенные требования. Они, прежде всего, должны быть высокопродуктивными, пригодными для использования на высокомеханизированных доильных установках, иметь крепкую конституцию и наилучшие экстерьерные признаки. Оценка животных по типу сложения и соотношению отдельных частей тела позволяет судить о типе и направлении их продуктивности, а также об условиях выра-

щивания в раннем возрасте, так как эти условия отражаются непосредственно на типе их телосложения.

Взятие экстерьерных промеров показало, что голштинизированные помеси (F_1) достоверно уступают симментальским сверстницам по ширине груди — на 5,1-8,1 см (P<0,05-0,01), обхвату пясти — на 0,6-0,7 см (P<0,05) и превосходят их по ширине в седалищных буграх на 1,2-1,5 см (P<0,001). По всем остальным промерам выявленная разница оказалась незначительной (табл. 1).

Установлено, что с возрастом прослеживается четкая тенденция более интенсивного роста промеров тела помесных животных в длину, ширину, глубину и высоту. Так, у симментальских коров высота в холке к третьей лактации увеличилась лишь на 0,91%, ширина и глубина груди — на 2,19 и 4,60 %, обхват груди — на 4,8 %, косая длины туловища — на 2,5%, ширина в маклоках и седалищных буграх — на 5,0 и 7,96 %. В то время как полукровным животным за этот период был характерен наибольший прирост величин указанных промеров, который соответственно составил 2,1; 12,1; 6,4; 6,6; 3,8; 7,0 и 8,6%.

Как показали исследования, у животных исходных генотипов более активный прирост всех промеров тела наблюдается в течение первой лактации, затем его интенсивность заметно снижается, за исключением широтных промеров (ширина груди и ширина в седалищных буграх), рост которых продолжается до четвертой лактации.

Большое значение в селекции имеет форма, промеры вымени и сосков, дающие объективную характеристику его развития и находящихся в связи с продуктивностью и пригодностью к машинному доению. По данным многих авторов [10, 13, 14], между формой вымени и отдельными его промерами, а также вычисленного по ним объемом вымени и удоем коров имеется положительная связь (r = 0,56-0,84). Степень пригодности молочного скота к условиям механизированных ферм обусловлена прежде всего однородностью его на скорость доения и равномерностью выдаивания отдельных четвертей. Корова, имеющая вымя

Молочная продуктивность коров разных генотипов

	Показатель								
Генотип	n	удой, кг	содержание	молочный	живая				
			жира, %	жир, кг	масса, кг				
1-я лактация									
Симменталы									
5/8C + 3/8KΠΓ	143	3550±53	3,80±0,011	134,9±2,03	556±4,60				
1/2C + 1/2KΠΓ	92	3736±72	4,01±0,018	149,8±2,97	523±7,49				
3/8С + 5/8КПГ	176	3856±57	3,95±0,015	152,3±2,20	527±4,61				
1/4С + 3/4КПГ	42	3802±64	3,95±0,022	150,1±3,06	526±11,30				
3/4С +1/4Монб.	48	4008±91	4,05±0,027	162,3±4,13	507±5,58				
1/2С +1/2Монб.	17	3556±121	3,99±0,068	141,8±5,40	534±12,72				
1/4С +1/4Монб.	89	3816±77	3,84±0,013	146,5±2,89	549±5,07				
+ 1/2КПГ	37	3982±102	3,95±0,029	158,5±3,92	518±9,43				
2-я лактация									
Симменталы									
5/8С + 3/8КПГ	142	4022±57	3,85±0,018	154,8±2,29	589±4,63				
1/2C + 1/2KПГ	45	3778±121	4,03±0,022	152,2±5,20	565±11,10				
3/8С + 5/8КПГ	98	4269±66	4,01±0,024	171,1±3,11	575±6,90				
1/4С + 3/4КПГ	23	4245±104	4,07±0,038	172,8±7,21	562±10,35				
3/4С +1/4Монб.	20	4297±133	4,05±0,043	174,0±5,67	554±9,62				
1/2С +1/2Монб.	17	3945±191	4,03±0,035	158,9±8,20	583±11,52				
1/4С +1/4Монб.	88	4135±90	3,89±0,022	160,8±3,46	591±5,28				
+ 1/2КПГ	25	4226±103	4,06±0,040	171,6±5,73	570±11,86				
3-я лактация									
Симменталы									
5/8C + 3/8KПГ	139	4353±66	3,82±0,016	166,2±2,70	617±4,62				
1/2С + 1/2КПГ	11	4230±224	3,97±0,027	167,9±8,94	598±13,43				
3/8С + 5/8КПГ	46	4394±107	4,03±0,024	177,0±4,85	616±15,70				
1/4С + 3/4КПГ	2	4656±86	4,06±0,18	189,0±5,03	590±12,54				
3/4С +1/4Монб.	8	4367±241	4,04±0,078	174,5±10,80	584±10,96				
1/2С +1/2Монб.	10	3740±177	4,03±0,094	150,7±7,11	590±10,04				
1/4С +1/4Монб.	66	4574±110	3,96±0,019	181,1±4,42	623±6,46				
+ 1/2КПГ	9	4471±135	3,98±0,050	179,6±4,51	598±13,66				

с равномерно развитыми четвертями, не требует ручного и машинного додаивания, заключительного массажа вымени, у такой коровы стаканы не передерживаются на четвертях, в результате вымя не поражается маститом [10, 15].

Использование голштинских быков в стаде симментальского скота племзавода «Родина» позволило существенно улучшить морфологические и функциональные свойства вымени у помесного поголовья. Среди них чашеобразную форму вымени имели 83% животных, округлую — 17%, а среди симментальских — соответственно 46,0; 48,6 и козью — 5,4%. Вымя у помесных коров объ-

емистое, прикрепление к брюху плотное, спадаемость вымени после доения сильная, дно вымени горизонтальное, расположено квадратно, большинство коров имеет цилиндрическую форму сосков (75-89%). По основным промерам вымени они значительно превосходят чистопородных сверстниц (табл. 2). По интенсивности молокоотдачи помесные коровы достоверно превосходили симментальских на 0,28-0,43 кг/мин, индекс вымени у них улучшился на 0,6%.

Как известно, генотип определяет норму реакции организма на внешние условия. При изменении условий среды неизбежно меняется и норма реакции. В племзаводе

Таблица 4 Воспроизводительная способность коров разного генетического происхождения

	Показатель						
Генотип	n	возраст 1-го от- ела, мес.	межотельный период, мес.	индекс пло- довитости по Дохи, %	сервис-период, дн.		
Симменталы	140	28,0±0,39	12,3±0,12	47,4±0,48	84,9±4,7		
5/8С + 3/8КПГ	70	24,9±0,33	12,7±0,24	49,7±0,53	88,9±7,3		
1/2С + 1/2КПГ	64	25,7±0,40	12,1±0,19	50,1±0,57	94,7±5,6		
3/8С + 5/8КПГ	24	25,3±0,50	11,7±0,27	50,1±1,41	70,0±9,6		
1/4С + 3/4КПГ	38	24,3±0,49	12,4±0,66	50,8±1,51	78,5±9,5		
3/4С +1/4Монб.	16	26,2±0,75	12,0±0,24	49,8±0,89	79,4±11,0		
1/2С +1/2Монб.	70	26,7±0,47	12,6±0,18	48,1±0,53	90,9±6,8		
1/4С +3/4Монб.	42	24,6±0,51	12,0±0,27	51,3±1,29	85,5±13,7		
1/4C + 1/4M +1/2KΠΓ	14	25,0±0,86	12,9±0,43	49,1±1,38	101,6±19,5		

«Родина» при обеспеченности кормами более 50 ц корм. ед. на корову в год, животные разных генотипов показали следующие результаты (табл. 3). Данные таблицы подтверждают, что в условиях улучшенного кормления полнее реализуется генотип помесных животных, особенно с кровностью от 50 до 75% по голштинской породе. От коров исходных генотипов по первой лактации надоено молока на 252-458 кг (7,1-12,9%; Р<0,001) больше, чем от симментальских, по второй – соответственно больше на 223-275 кг, а по третьей лактации их преимущество над чистопородными сверстницами составило лишь 41-179 кг. Более стабильное превосходство по удою за 1-3 лактации над чистопородными сверстницами имели потомки монбельярдских быков с кровностью 50-75% и трехпородные помеси.

Анализ возрастной динамики продуктивности чистопородных и помесных коров показывает, что с возрастом у всех генотипов наблюдается повышение молочной продуктивности. Рост удоев у голштинизированных коров, в зависимости от их генотипической принадлежности, составил за вторую и третью лактации, в сравнении с первой, 1,1-1,6 и 8,9-22,4%, а у симментальских коров – 13,3 и 22,6%. Повышение удоя у помесей 1/2С + 1/2M и 1/4C + 1/4M + 1/2KПГ за эти лактации составило 6,1-8,3 и 12,3-19,8%. Исследованиями установлено, что у помесных коров всех генотипов, особенно у высококровных, с возрастом прослеживается тенденция к снижению первоначального их превосходства в продуктивности над чистопородными симментальскими сверстницами.

Среднее содержание жира в молоке голштинизированных коров варьировало по первой лактации от 3,95 до 4,05%, второй – от 4,01 до 4,07 и третьей – от 3,97 до 4,06%. Помеси по жирномолочности превосходили чистопородных сверстниц на 0,04-0,25% (0,05<P<0,001).

Многие исследователи живую массу рассматривают как запас прочности коровы и резерв напряженной работы ее организма в течение лактации. В данном стаде голштинизированные помеси имели живую массу по первой лактации 507-527 кг, по второй – 554-575 кг и по третьей – 586-616 кг. С повышением кровности по голштинской породе у помесей наблюдается заметное снижение живой массы. Если помеси с кровностью 37,5% уступали по живой массе чистопородным сверстницам, в зависимости от возраста в лактациях, на 19-33 кг, полукровные – на 1-29 кг, то помеси с кровностью 62,5 и 75% - соответственно на 27-30 и 33-49 кг (0,05<P<0,001).

В молочном скотоводстве среди селекционируемых признаков одним из основных является воспроизводительная способность животных. Нарушение воспроизводительной функции коров ведет не только к уменьшению количества приплода, но и снижению молочной продуктивности. Исследования показали, что помеси по воспроизводительной способности не уступают симментальским сверстницам (табл. 4). Возраст первого отела у них был ниже, чем у чистопородных, на 1,3-3,7 мес. (P<0,05-0,001), а индекс плодовитости выше на 0,7-3,4% (0,05<P<0,001). Имеющиеся различия по продолжительности межотельного и сервис периодов были не достоверными.

Выводы

Таким образом, использование быков голштинской и монбельярдской пород в стаде симментальского скота племзавода «Родина» способствовало увеличению молочной продуктивности коров и их численности молочного типа в группах помесных животных всех генотипов. У помесей хорошо выражены характерные для улучшающих пород отдельные черты экстерьера, конституции и технологических качеств вымени.

Библиографический список

- 1. Дедов, М.Д. Симментальская порода / М.Д. Дедов // Импортный скот в СССР. М.: Колос, 1976. 288 с.
- 2. Бальцанов, А.И. Методы создания красно-пестрой породы / А.И. Бальцанов. Саранск, 1987. 76 с.
- 3. Прудов, А.И. Использование голштинской породы для интенсификации селекции молочного скота / А.И. Прудов, И.М. Дунин. – М.: Нива России, 1992. – 192 с.
- 4. Новая популяция красно-пестрого молочного скота / И.М. Дунин, Н.В. Дугушкин, В.И. Ерофеев, А.П. Вельматов. Москва, 1998. 316 с.
- 5. Толманов, А.А. Совершенствование районированных пород молочного скота в Среднем Поволжье: рекомендации / А.А. Толманов, П.С. Катмаков, В.П. Гавриленко. Ульяновск, 1996. 54 с.
- 6. Хайсанов, Д.П. Использование голштинской породы в молочном скотоводстве

- Поволжья / Д.П. Хайсанов, П.С. Катмаков, В.П. Гавриленко. Ульяновск, 1997. 307 с.
- 7. Катмаков, П.С. Создание новых высокопродуктивных типов и популяций молочного скота / П.С. Катмаков, Е.И. Анисимова. Ульяновск, 2010. 242 с.
- 8. Анисимова, Е.И. Эффективность использования разных внутрипородных типов при совершенствовании симментальского скота в Среднем Поволжье: рекомендации / Е.И. Анисимова, П.С. Катмаков. Саратов, 2011. 47 с.
- 9. Катмаков, П.С. Экстерьерно-конституциональные и хозяйственно-биологические особенности голштинизированных симментальских коров разных генотипов / П.С. Катмаков, А.В. Хаминич // Вестник Ульяновской государственной сельскохозяйственной академии. 2013. №2 (22). С.69-73.
- 10. Гарькавый, Ф.Л. Селекция коров и машинное доение / Ф.Л. Гарькавый. М.: Колос, 1974. 160 с.
- 11. Плохинский, Н.А. Руководство по биометрии для зоотехников / Н.А. Плохинский. М.: Колос, 1969. 255 с.
- 12. Меркурьева, Е.К. Биометрия в селекции и генетике сельскохозяйственных животных / Е.К. Меркурьева. М.: Колос, 1970. 422 с.
- 13. Бондарь, Р.М. Размер, форма вымени и сосков, скорость молокоотдачи как признаки отбора коров: дис. ... канд. сельскохозяйственных наук / Р.М. Бондарь. Белая Церковь, 1968. 16 с.
- 14. Всяких, А.С. Методы ускорения селекции молочного скота / А.С. Всяких. М.: Росагропромиздат, 1990. 192 с.
- 15. Велиток, И.Г. Технология машинного доения коров / И.Г. Велиток. М.: Колос, 1975. 256 с.