МОРФОМЕТРИЯ КОСТЕЙ МОЛОДНЯКА СВИНЕЙ ПРИ СКАРМЛИВАНИИ НЕТРАДИЦИОННЫХ МИНЕРАЛЬНЫХ ПОДКОРМОК

Шленкина Татьяна Матвеевна, кандидат биологических наук, доцент кафедры «Биология, ветеринарная генетика, паразитология и экология»

Любин Николай Александрович, доктор биологических наук, профессор кафедры «Морфология, физиология и патология животных»

Дежаткина Светлана Васильевна, кандидат биологических наук, доцент кафедры «Морфология, физиология и патология животных»

ФГБОУ ВО Ульяновская ГСХА

432017, г. Ульяновск, бульвар Новый Венец, 1; тел.: 8(8422)55-23-75, e-mail: dsw1710@yandex.ru, star982@yandex.ru

Ключевые слова: свиноматки, поросята, микроэлементы, рацион, кровь, кормовая добавка, кости.

Применение нетрадиционных кормовых добавок: кремнеземистого мергеля и полисолей для свиней разного возраста оказывает благоприятное влияние на рост массы и длины их костей.

Введение

Состояние здоровья животного, продуктивность и воспроизводительные качества в значительной степени определяются его пищевым статусом, то есть степенью обеспеченности организма энергией и целым рядом пищевых веществ, в т. ч. минеральных элементов [1, 2, 3, 4, 5].

Важнейшим условием формирования прочного и крепкого костяка молодняка свиней является обеспечение их минеральными веществами в соответствии с нормой их потребности. Недостаток этих элементов в кормах можно компенсировать использованием солей химических соединений (полисолей) и природных цеолитсодержащих источников (мергелей) [6 -14].

Целью нашего исследования является изучение морфометрических показателей у свиней разного возраста при использовании нетрадиционных кормовых добавок: кремнеземистого мергеля Сиуч-Юшанского месторождения Ульяновской области и полисолей (меди и цинка).

Объекты и методы исследований

Объектом исследования стали свиньи крупной белой породы, сформированные в три группы по 50 животных в каждой: 1-я контрольная получала основной рацион (ОР), сбалансированный по основным питательным веществам, но имеющий недостаток минеральных веществ, 2-я группа — ОР с добавкой

полисолей (меди и цинка) и 3-я группа – ОР с добавкой кремнеземистого мергеля. Для эксперимента использовали следующие возрастные группы свиней: супоросные свиноматки, подсосные свиноматки с поросятами, отъемный молодняк свиней двухмесячного возраста и молодняк свиней на откорме, выращиваемый до возраста 9 месяцев. Полисоли (меди и цинка) были приготовлены в научно-производственной ветеринарной лаборатории Главного Управления ветеринарии Кабинета Министров РТ (г. Буинск), их дозировали в количестве, соответствующем рекомендации по использованию. Свиньям 3-й группы скармливали мергель в дозе 2 % от сухого вещества рациона, что соответствовало количеству микроэлементов, вводимых в рацион животных 2-й группы в составе полисолей. Содержание животных было групповым, со свободным доступом к воде и пище. После окончания опыта провели убой животных по 3 головы из группы, для исследования морфометрических показателей брали пробы костей.

Результаты исследований

В ходе опыта нами было установлено (табл.1), что скармливание полисолей супоросным свиноматкам не оказывает заметного влияния на изменение длины и массы бедренных костей новорожденных поросят, однако способствует уменьшению массы их пястных костей на 6,23 %, массы и длины ребра на 25,64 % и 14,25 % соответственно по сравне-

Таблица 1 Морфологические изменения бедренной кости молодняка свиней разного возраста при использовании нетрадиционных кормовых добавок

		· ·		<u> </u>							
Показатель, ед.		суто	чные поро			як свиней		молодняк свиней 105 дней			
		1	2	3	1	2	3	1	2	3	
		группа	группа	группа	группа	группа	группа	группа	группа	группа	
		1	2	3	4	5	6	7	8	9	
Бедренная											
Масса кости, г	M±m	6,55±	6,52±	6,63±	37,67±	41,33±	42,67±	49,77±	51,42±	60,5±	
		0,18	0,27	0,15	0,67	0,33	0,88	0,15	1,89	0,29	
	%	100,00	99,54	101,22	100,00	109,73	113,27	100,00	103,32	121,57	
						P<0,002	P<0,002			P<0,001	
	%		100,00	101,69		100,00	103,24		100,00	117,66	
										P<0,01	
Длина кости, см	M±m	5,28±	5,33±	5,43±	9,37±	9,27±	10,0±	10,07±	9,9±	12,07±	
		0,03	0,07	0,03	0,07	0,15	0,12	0,15	0,1	0,67	
	%	100,00	101,0	102,90	100,00	98,23	106,76	100,00	98,34	119,87	
							P<0,02		P<0,05	P<0,001	
	%		100,00	101,88		100,00	107,87		100,00	121,92	
							P<0,01			P<0,001	
					Пястные						
Масса кости, г	M±m	0,80±	0,75±	0,92±	3,65±	4,78±	4,58±	4,79±	5,25±	6,0±	
		0,003	0,003	0,003	0,08	0,15	0,23	0,26	0,13	0,76	
	%	100,00	93,77	114,20	100,00	131,04	125,56	100,00	109,60	125,26	
			P<0,001	P<0,001		P<0,01	P<0,02				
	%		100,00	122,67		100,00	95,82		100,00	114,29	
Длина кости, см	M±m	2,28±	2,23±	2,37±	3,88±	4,03±	4,25±	4,77±	4,5±	5,8±	
		0,03	0,03	0,003	0,02	0,03	0,03	0,07	0,12	0,1	
	%	100,00	98,50	104,11	100,00	103,86	109,45	100,00	94,40	121,67	
				P<0,05		P<0,05	P<0,001			P<0,01	
	%		100,00	106,28		100,00	105,46		100,00	128,89	
			0051 44			/ 0004					

Примечание: * - (p<0,05),** - (p<0,01), *** - (p<0,001) по сравнению с соответствующим показателем в контрольной группе

нию с контролем. А у подсосного молодняка 3-й группы, получавших мергель, обеспечивает увеличение массы пястных костей на 14,2 % (P<0,001), их длины на 4,1 % (P<0,05), длины ребра на 73,5 % (P<0,001) по сравнению с данными показателями у сверстников в контроле.

На 60-е сутки постнатального онтогенеза у молодняка свиней 2-й группы выявлено увеличение изучаемых показателей: так, масса бедренной кости статистически достоверно возросла на 9,73 % (P<0,02); пястной - 31,04 % (P<0,01); ребра - на 32,98 % (P<0,01) по сравнению с контролем. А у поросят 3-й группы этого возраста наблюдалось достоверное увеличение массы костей: бедренной - на 13,27 % (P<0,02); пястной - на 25,56 % (P<0,02) по сравнению с контролем. Подобная, но менее выраженная динамика наблюдалась и в отношении длины костей: бедренной - на 6,76 % (P<0,02) пястной - на 9,45 % (P<0,001) по сравнению с контролем. Аналогичная закономерность просматривается и в динамике данных показателей у 105-суточных поросят. У молодняка данного постэмбрионального онтогенеза 3-й группы установлено увеличение массы костей: бедренной - на 21,57 % (P<0,001); пястной - на 25,26 % (P>0,05) по сравнению со сверстниками. Такая же динамика отмечалась и в отношении длины этих костей. При этом скармливание полисолей животным данного возрастного периода 2-й группы существенных различий названных показателей морфометрии бедренной и пястной кости не выявило.

Более четкую информацию о динамике изучения абсолютных промеров можно получить на основании изменения индекса абсолютной массивности, который определяется как отношение массы костей к их длине (таблица 2). Индекс абсолютной массивности в суточном возрасте поросят всех групп был

Таблица 2 Остеометрические параметры бедренной кости молодняка свиней разного возраста при использовании нетрадиционных кормовых добавок

	Возраст молодняка свиней (сутки)									
Показатель, ед.	1			60			105			
	I	П	III	I	Ш	III	I	П	III	
Плина см	5,28±	5,33±	5,43±	9,37±	9,27±	10,0±	10,07±	9,9±	12,07±	
Длина, см	0,03	0,07	0,03	0,07	0,15	0,12	0,7	0,1	0,03	
Сегментальная ширина	3,77±	3,67±	3,70±	6,6±	6,56±	7,03±	6,70±	7,04±	9,9±	
дистального эпифиза, см	0,67	0,03	0,06	0,03	0,03	0,06	0,03	0,03	0,03	
Сагиттальная ширина	1,44±	1,30±	1,50±	2,04±	2,34±	2,64±	2,57±	2,93±	4,4±	
дистального эпифиза, см	0,67	0,07	0,03	0,03	0,07	0,03	0,03	0,27	0,07	
Сегментальная ширина	0,67±	0,73±	0,72±	1,03±	1,17±	1,07±	1,13±	1,43±	1,17±	
диафиза, см	0,03	0,03	0,03	0,03	0,03	0,03	0,04	0,03	0,04	
Сагиттальная	3,53±	3,67±	3,57±	6,13±	6,43±	6,29±	7,77±	8,57±	6,33±	
ширина диафиза, см	0,07	0,03	0,03	0,03	0,02	0,03	0,03	0,07	0,07	
Попилата пила на п	8,33±	8,53±	8,6±	14,77±	14,34±	14,99±	15,8±	15,0±	20,0±	
Периметр диафиза, см	0,18	0,07	0,12	0,07	0,04	0,09	0,12	0,12	0,2	
Индекс абсолютной	1 24	1 22	1 22	4.04	F 10	F 01	4.02	4.46	4.27	
массивности	1,24	1,22	1,22	4,94	5,19	5,01	4,02	4,46	4,27	
Расширенность эпифиза	1,24	1,29	1,18	1,04	1,27	1,34	1,20	1,22	1,27	
Грациальность	0,63	0,62	0,63	0,63	0,65	0,67	0,64	0,66	0,60	

Примечание: * - (p<0,05), ** - (p<0,01), *** - (p<0,001) по сравнению с соответствующим показателем в контрольной группе

практически одинаков. А в 60- и 105-суточном возрасте молодняка свиней у группы с применением мергеля был выше по сравнению данными во 2-й группе на 0,18 и 0,19. При этом показатель грациальность у молодняка 3-й группа был более выражен, чем у сверстников во 2-й группе.

Выводы

Введение в рацион супоросных свиноматок полисолей и мергеля не оказало существенного влияния на массу костей и их рост в длину у поросят за период внутриутробного развития. Скармливание мергеля Сиуч-Юшанского месторождения молодняку свиней 60- и 105-суточного возраста способствует более активному росту массы и длины их костей, чем использование полисолей (меди и цинка).

Библиографический список

- 1. Влияние Ферросила на обмен веществ и репродуктивные функции свиноматок / Д. Гайирбегов, А. Федин, Г. Симонов, А. Федонин // Свиноводство. 2009. № 1. С. 10-12.
- 2. Дежаткина, С.В. Концентрация минеральных элементов в крови свиней при использовании добавок соевой окары / С.В. Дежаткина, А.В. Дозоров, Н.А. Любин // Оралды гылым жаршысы =Уральский научный Вестник. Серия Биологические науки. 2013. № 27. С. 49—57.

- 3. Дозоров, А.В. Физиолого-биохимический статус свиноматок и поросят при обогащении рационов соевой окарой / А.В. Дозоров, С.В. Дежаткина // Вестник Ульяновской государственной сельскохозяйственной академии. 2011. № 4. С. 53-57.
- 4. Савина, Е. Живая масса, репродуктивность и молочная продуктивность свиноматок при использовании в их рационах препарата Биокоретрон Форте» / Е. Савина // Свиноводство. 2009. № 1. С. 14-17.
- 5. Шленкина, Т.М. Содержание лимонной кислоты на метаболические процессы костной ткани свиней /Т.М. Шленкина // Свиноферма. 2008. № 8. С 27-28.
- 6. Ахметова, В.В. Физиолого-биохимическая характеристика использования различных доз кремнеземистого мергеля в рационах молочных коров / В.В. Ахметова, С.В. Фролова, Н.А. Любин // Вестник Ульяновской государственной сельскохозяйственной академии. 2001. № 1. С. 105-111.
- 7. Эффективность использования цеолитсодержащих минералов в сочетании с органическими кислотами при выращивании телят / В.В. Ахметова, В.В. Козлов, Д.Г. Денисов, Д.А. Салин // Ветеринария сельскохозяйственных животных. 2006. № 12. С. 50-52.
 - 8. Васина, С.Б. Физиолого-биохимиче-

- ские реакции организма при использовании в рационах свиноматок различных минеральных добавок / С.Б. Васина, Н.А. Любин // Современные проблемы интенсификации производства свинины. Материалы Международной конференции по свиноводству. Ульяновск, 2007. Том 2. С. 253-259.
- 9. Дежаткина, С.В. Проблема микроэлементной недостаточности в Ульяновской обл. и способ ее решения для молочных коров / С.В. Дежаткина, В.В. Ахметова // Актуальные проблемы физиологии физического воспитания и спорта: сборник материалов конференции. Ульяновск, 2005. С. 27-30.
- 10. Козлов, Владимир Витальевич. Пищеварение и обмен веществ, продуктивная и репродуктивная способность у коров при использовании в их рационах местных природных туфов: дис. ...канд. сельскохозяйственных наук: 06.02.02 / В.В. Козлов Ульяновск, 1999. 191 с.
- 11. Кузнецов, К.К. Показатели минерального обмена поросят-сосунов и отъемышей при скармливании свиноматкам добавок соевой окары и природных цеолитов / К.К. Кузнецов, Н.А. Любин, С.В. Дежаткина // Вестник

- Ульяновской государственной сельскохозяйственной академии. 2014. № 4 С. 55-58.
- 12. Любин, Н.А. Биохимические закономерности формирования костной ткани свиней под воздействием минеральных добавок / Н.А. Любин, И.И. Стеценко, Т.М. Шленкина // Вестник Ульяновской государственной сельскохозяйственной академии. 2011. №4. С. 57-63.
- 13. Любин, Н.А. Эффективность использования различных минеральных добавок в рационах свиней / Н.А. Любин, С.Б. Васина, Т.М. Шленкина // Современные проблемы интенсификации производства свинины. Материалы XIV Международной научно-практической конференции по свиноводству. Ульяновск: УГСХА, 2007. С. 259-264.
- 14. Любин, Н.А. Динамика роста свиней при включении в их рационы различных минеральных добавок / Н.А. Любин, И.И. Стеценко, Т.М. Шленкина // Фундаментальные и прикладные проблемы повышения продуктивности сельскохозяйственных животных в изменившихся условиях системы хозяйствования и экологии. Материалы международной научно-практической конференции. Ульяновск: УГСХА, 2005. С. 109-113.