ОСОБЕННОСТИ ВОЗРАСТНЫХ ИЗМЕНЕНИЙ СОДЕРЖАНИЯ ЦИНКА У ТЕЛОК

Андреев Александр Иванович¹, доктор сельскохозяйственных наук, профессор кафедры «Технологии производства и переработки продукции животноводств».

Менькова Анна Александровна², доктор биологических наук, профессор кафедры «Нормальная и патологическая морфология и физиология»

¹Аграрный институт, ФГБОУ ВПО «Мордовский государственный университет им. Н.П. Огарева»: Россия, 430005, Республика Мордовия, г. Саранск, ул. Большевистская, 68, тел.: (834-2)25-40-02, e-mail: kafedra_tpppzh@agro.mrsu.ru

²ФГБОУ ВПО «Брянская государственная сельскохозяйственная академия»: Россия, 243365, Брянская обл., Выгоничский р-н, с. Кокино, ул. Советская, 2a; тел.: 89208458488, e-mail: olesyabobkova291101@mail.ru

Ключевые слова: телки, цинк, желудок, кишечник, стенки, химус, концентрация, содержание.

Экспериментально была изучена концентрация цинка и его содержание в стенках и химусе отделов желудка и кишечника телок 6-12-месячного возраста при сенажном типе кормления. На основании проведенных исследований установлено, что наибольшее количество этого элемента содержится в рубце и тонком отделе кишечника, а наименьшее — в сетке.

Введение

Среди микроэлементов цинк привлекает особое внимание, участие его необходимо в самых различных метаболических процессах организма. Он обладает весьма широким спектром физиологического воздействия. Будучи связанным с ферментами и гормонами, цинк значительно влияет на основные жизненные процессы: обмен углеводов, белков и жиров, кроветворение, рост и развитие организма, окислительновосстановительные реакции [1, 2, 3, 4, 5, 6]

Он имеет большое значение в процессе размножения, оказывает положительное влияние на функцию полового аппарата и улучшает воспроизводительные способности. При дефиците цинка наступает угнетение сперматогенеза и развитие первичных и вторичных половых признаков у самцов, всех этапов полового цикла у самок [7,8,9]

Воздействие цинка на репродукцию проявляется также через сложную взаимосвязь с другими минеральными элементами [10,11]

Его участие в метаболизме и накопление в организме животных изучено недостаточно. Поэтому исследования динамики изменения и распределения содержания

данного элемента в организме весьма актуально.

Цель исследований – изучить накопление и распределение цинка в организме растущих телок.

Объекты и методы исследований

Объектом исследования были ремонтные телки. В состав основных рационов включали сено, сенаж и ячменную дерть. Дефицит элементов питания восполняли фосфорно-кальциевыми добавками, поваренной солью, а также смесью солей микроэлементов. Кормление животных было двукратное, по распорядку дня, принятому в хозяйстве, а содержание тёлок беспривязное.

Суточные дозы минеральных подкормок смешивали с концентратами, что обеспечивало их полную поедаемость.

Контрольный убой животных проводили в 6, 9 и 12 месяцев (по 3 головы каждого возраста).

Изучили рубец, сетку, книжку, сычуг, тонкий и толстый кишечник, а также химус желудочно-кишечного тракта.

Концентрацию цинка в исследуемых образцах определяли на атомно-адсорбционном спектрофотометре.

Результаты исследований

В обмене цинка и его регуляции у жвачных животных важную роль играет пищеварительный канал, стенки которого, находясь в тесном контакте с кормовыми массами, вступают в связь со всеми химическими элементами и регулируют их оптимальное поступление в организме. Поэтому данные о концентрации и содержании этого элемента в стенках различных отделов желудочно-кишечного тракта представляют особый интерес (табл. 1,2).

Проведенные исследования показывают, что более высокая концентрация отмечалась в стенках сычуга (17,35-23,10 мг/кг) и сетки (15,47-17,38 мг/кг) и наименьшей она была в стенках тонкого отдела кишечника (9,73-11,40 мг/кг). В большей степени она повышалась к 12-месячному возрасту в стенках сычуга и тонкого кишечника телок.

Проведенный анализ накопления цинка в стенках пищеварительного тракта свидетельствует о том, что наибольшая его часть сосредоточена в стенках рубца (28,9-32,1 %) и тонкого кишечника (22,5-28,1 %).

По-видимому, эти отделы принимают наиболее активное участие в метаболизме цинка. Следует также отметить, что в стенках

рубца, сетки, книжки и сычуга цинк больше всего депонировался в период от 9 до 12 месяцев, а в тонком и толстом кишечнике наполнение было более равномерным. С возрастом содержание цинка во всех отделах желудка повышалось практически одинаково (в 1,6-2,4 раза), в кишечнике — в 1,5-1,6 раза от первоначального (Р<0,01).

В процессах всасывания и перераспределения цинка в организме телок в возрастном аспекте особое значение имеет химус пищеварительного тракта (табл.3)

Исследования показали, что в химусе концентрация элемента была несколько больше в содержимом рубца (5,8-6,7 мг/кг) и меньше в тонком кишечнике (4,6-4,8 мг/кг), в других отделах она существенно не отличалась.

С возрастом телок его концентрация снижалась в толстом кишечнике с 6,20 до 5,72 мг/кг, или на 7,8 %, и повышалась более интенсивно в рубце - на 15,2 % (P<0,05).

Сопоставляя концентрацию цинка в стенках отделов и в их содержимом, необходимо отметить, что она была ниже в химусе рубца — в 2,4 раза, сетки — в 3,2 раза, книжки — в 2,3 раза, сычуга — в 3,6 раза, тонкого отдела — в 2,2 раза, толстого отдела кишечника

Таблица 2

Таблица 1 Концентрация цинка в стенках желудочно-кишечного тракта телок, мг/кг

Отдел желудочно-кишечного	Возраст, мес.		
тракта	6	9	12
Рубец	14,81±0,31	15,09±0,35	15,60±0,33
Сетка	15,47±0,19	15,90±0,22	17,38±0,26
Книжка	12,60±0,18	13,20±0,23	14,55±0,33
Сычуг	17,35±0,28	19,62±0,35	23,10±0,27
Тонкий кишечник	9,73±0,28	10,03±0,15	11,40±0,32
Толстый кишечник	11,90±0,43	12,36±0,31	12,24±0,29

Содержание цинка в стенках желудочно-кишечного тракта телок, мг

	• • •	-	
Отдел желудочно-кишечного	Возраст, мес.		
тракта	6	9	12
Рубец	40,00±0,36	57,94±0,83	81,74±1,28
Сетка	7,89±0,24	9,54±0,20	12,69±0,42
Книжка	15,75±0,25	24,82±0,35	38,56±0,32
Сычуг	16,14±0,35	20,01±0,45	33,03±0,43
Тонкий кишечник	38,82±0,64	47,94±1,09	57,34±0,90
Толстый кишечник	19,75±0,21	26,33±0,30	31,82±0,41

Таблица 4

Концентрация цинка в химусе желудочно-кишечного тракта телок, мг/кг

Отдел желудочно-кишечного	Возраст, мес.		
тракта	6	9	12
Рубец	5,84±0,13	6,53±0,10	6,73±0,22
Сетка	5,05±0,12	4,91±0,19	5,20±0,19
Книжка	5,60±0,43	5,88±0,13	5,98±0,14
Сычуг	5,36±0,25	5,52±0,17	5,60±0,12
Тонкий кишечник	4,59±0,19	4,71±0,28	4,78±0,15
Толстый кишечник	6,20±0,07	5,95±0,20	5,72±0,10

Содержание цинка в химусе желудочно-кишечного тракта телок, мг

codephanic dilina b kilinyee heriya ano kilime anoro ipakia resion, ini					
Отдел желудочно-кишечного	Возраст, мес.				
тракта	6	9	12		
Рубец	79,42±3,63	127,14±5,22	187,90±7,50		
Сетка	2,02±0,21	2,36±0,03	2,60±0,16		
Книжка	6,94±0,72	12,76±0,45	16,80±0,50		
Сычуг	3,16±0,21	3,75±0,29	5,38±0,41		
Тонкий кишечник	9,27±0,48	11,07±0,78	18,98±0,93		
Толстый кишечник	10 29+0 48	11.78+0.55	12.41+0.33		

– в 2,0 раза.

С ростом животных увеличивается потребление ими кормов, возрастает масса содержимого, что соответственно отражается на общем содержании цинка в химусе пищеварительного тракта (табл.4).

За изучаемый период содержание элемента в химусе рубца и книжки увеличилось в 2,4 раза, тонком кишечнике — в 2,0 раза, сычуге — в 1,7 раза, сетке и толстом кишечнике — в 1,2 раза (P<0,01). Установлено также, что в химусе книжки, сетки и толстого кишечника накопление цинка более интенсивно проходило в период с 6 до 9 месяцев (60-70 %), рубца, сычуга и тонкого кишечника — от 9 до 12 месяцев (56-81 %).

Выводы

В результате проведенных исследований было установлено, что среди отделов желудочно-кишечного тракта наибольшая концентрация цинка наблюдается в стенках сычуга, сетки, химусе рубца, а наименьшая – в тонком отделе кишечника.

По мере роста животных количество данного элемента повышается и в большей степени это проявляется в стенках и химусе рубца, книжки, сычуга и тонкого кишечника в период с 9- до 12-месячного возраста.

Библиографический список

- 1. Оптимизация минерального питания сельскохозяйственных животных / А.М. Гурьянов, В.А. Кокорев, Ю.Н. Прытков, Н.В. Дугушкин // Зоотехния. 2004. № 7. С. 12-16.
- 2. Андреев, А.И. Нормирование минеральных элементов при выращивании телок на зеленых кормах / А.И. Андреев // Зоотехния. 1998. №7. С. 20-22.
- 3. Любин, Н.А. Физиологические аспекты использования биологически активных веществ в свиноводстве / Н.А. Любин, И.И. Стеценко // Вестник Ульяновской государственной сельскохозяйственной академии. 2009. №3. С. 42-45.
- 4. Андреев, А.И. Нормирование цинка в рационах ремонтных телок / А.И. Андреев, С.А. Лапшин, Н.А. Давыдов // Вестник Российской академии сельскохозяйственных наук. 2002. №6. С. 68-71.
- 5. Менькова, А.А. Влияние разного уровня минерального питания на функциональную морфологию надпочечников ремонтных телок / А.А. Менькова, Г.Н. Бобкова, А.И. Андреев // Вестник Ульяновской государственной сельскохозяйственной академии. 2004. №2(26). С. 114-119.

- 6. Влияние разного уровня минерального питания на функциональную морфологию щитовидной железы ремонтных телок / А.А. Менькова, Г.Н. Бобкова, А.И. Андреев, В.И. Чикунова // Вестник Орловского государственного аграрного университета. 2015. №3(54). С. 86-90.
- 7. Сковородин, Е.Н. Развитие яичников крупного рогатого скота в онтогенезе / Е.Н. Сковородин, А.И. Андреев, В.И. Чикунова // Морфология. 2000. №3. С. 110-111.
- 8. Особенности минерального обмена в организме телок при половом созревании / А.И. Андреев, А.А. Менькова, В.И. Чикунова, В.Н. Пронин // Вестник Орловского государственного аграрного университета. 2012. №6, Том 39.— С. 72-73.
- 9. Васина, С.К. Влияние минеральной подкормки на организм супоросных свиноматок и их потомство / С.К. Васина, Н.А. Любин, Л.Б. Кокова // Ветеринария сельскохозяйственных животных. 2007. №8. С. 62.
- 10. Кистина, А.А. Научно-практическое обоснование применения селеносодержащих препаратов в кормлении крупного рогатого скота: монография / А.А. Кистина, Ю.Н. Прытков. Саранск, 2010. 140 с.
- 11. Логинова, Л.Н. Обмен серы у ремонтных телок и их потребность в этом элементе при разных типах кормления: автореф. дис. ... канд. сельскохозяйственных наук / Л.Н. Логинова.— Саранск, 1991. 23с.