- 2. Валютно-рейтинговая оценка отраслей животноводства, их производства, переработки.
- 3. Валютно-рейтинговая оценка территорий районов, сельскохозяйственного производства (предприятий).
- 4. Обоснование, оптимизация мощностей и размещения перерабатывающих цехов на данной территории.
- 5. Разработка льготной системы налогообложения основного капитала, выручки, доходов, прибыли, в том числе на местном уровне.
- Применение льготной системы налогообложения валютных инвестиций (кредитов) инофирм в создание миницехов, внедрение высоких биотехнологий.
 - 7. Льготная система формирования, распределения прибыли.
- 8. Повышение социального статуса работников производства, переработки сельскохозяйственной продукции.

УДК 636.22/28.082.12.03

ПРОДУКТИВНОСТЬ, ВОСПРОИЗВОДСТВО И ДОЛГОЛЕТИЕ КОРОВ БЕСТУЖЕВСКОЙ И ГОЛШТИНСКОЙ ПОРОДЫ ПРИ РАЗНЫХ УРОВНЯХ ИХ КОРМЛЕНИЯ И ТЕХНОЛОГИЯХ СОДЕРЖАНИЯ Д.П.Хайсанов, профессор

Используя материалы первичного зоотехнического учета в молочном скотоводстве хозяйств Ульяновской области и данные экспериментальных исследований, сделан анализ продуктивной отзывчивости коров бестужевской, голштинской пород и помесей на разный уровень их кормления. Анализ полученных результатов, сведенных в таблицы 1, 2, 3, показывает, что, в условиях ограниченного кормления, потенциал продуктивности у коров бестужевской породы проявляется на 295 кг молока и на 13,44 кг молочного жира выше, чем у голштинской породы.

Таблица 1 Молочная продуктивность коров разных генотипов при разном уровне годового потребления кормов

		2000.0 1101	N Idilloucooc	Pinob							
	Уровень кормления и порода										
Показатели		вкий орм. ед.)		дний орм. ед.)	высокий (7000 корм. ед.)						
	бесту- жевская	голштин- ская	бестужев- ская	голштин- ская	бесту- жевская	голштин- ская					
Удой, кг	2280	1985	3720	5253.	5180	7380					
% жира	3,68	3,55	3,78	3,68	3,89	3,62					
Мол.жира, кг	83,90	70,46	140,6	193,3	201,5	267,2					

В условиях более интенсивного кормления (средний и высокий уровень) коровы голштинской породы по отношению к бестужевской увеличили проявление своего потенциала продуктивности соответственно на 1533 и 2200 кг молока и на 52,7 и 65,65 кг молочного жира. У коров же бестужевской породы с увеличением уровня кормления при менее значительном темпе нарастания продуктивности (в 1,63-2,27 раза против 2,65-3,72 раза у голштинов), проявляются различные заболевания печени, конечностей, бесплодие и другие болезни.

У коров с генотипом голштинской породы в ответ на повышение уровня их кормления, так же как и у чистопородных голштинов, отмечается высокая степень проявления потенциала молочной продуктивности. При этом необходимо отметить, что высокую молочную продуктивность помесные животные проявляют уже с первой лактации и с увеличением возраста коров в лактациях и их кровности по голштину продуктивность увеличивается (табл. 2).

Таблица 2 Молочная продуктивность голштинских помесей при разном уровне годового потребления кормов

	Уровень годового потребления кормов							
Генотип	средний			высокий				
животных	удой,	й, % молочн.		удой,	%	молочного		
	KΓ	жира	жира	КГ	жира	жира		
	I лактация (n=120)							
1/2Б+1/2Г	4899	3,82	187,14	5130±223,4	3,29±0,06	168,8		
1/4Б+3/4Г	5487	3,64	199,72	5700±166,6	3,57±0,05	203,5		
1/8Б+7/8Г	5594	3,90	206,42	6110±119,6	3,48±0,03	212,6		
1/16Б+15/16Г	-	-	_	6180±236,6	3,43±0,07	212,0		
ч/п Г	1	ı	_	6147±383,2	3,56±0,16	218,8		
	II лактация (п-120)							
1/2Б+1/2Г	4752	3,89	184,8	5975±321,1	3,37±0,07	201,4		
1/4Б+3/4Г	5479	3,75	205,5	6390±225,6	3,49±0,05	223,0		
1/8Б+7/8Г	5966	3,76	224,3	6190±142,3	3,53±0,04	218,5		
1/16Б+15/16Г	-	_	_	5920±361,1	3,51±0,08	207,8		
ч/п Г				6083±653,7	3,63±0,18			
	Ш лактация и старше (n=120)							
1/2Б+1/2Г	5495	3,61	198,4	5710±294,8	3,52±0,05	201,0		
1/4Б+3/4Г	5831	3,77	219,8	6120±187,7	3,48±0,03	213,0		
1/8Б+7/8Г	6206	3,73	231,5	7348±134,6	3,46±0,04	254,2		
1/16Б+15/16Г	_	_	-	5327±369,7	3,31±0,07	176,3		
ч/п Г			_	5560±628,6	3,34±0,17	185,7		

Она достигает максимальной величины у 7/8 кровности коров Ш лактации в пределах 6206 кг с жирностью 3,73% при умеренном уровне кормления и 7348 кг с жирностью 3,46 % при высоком годовом уровне потребления кормов. У коров 15/16 кровности и чистопородных уровень молочной продуктивности и выходы молочного жира по I и II лактации был почти таким же как и у коров 7/8 кровности, а уже по III лактации и старше показатели их продуктивности были существенно ниже (Р<0,05), чем у 7/8 кровных коров.

Таблица : Воспроизводительная способность у коров в зависимости от генотипа и условий содержания

		Cv	Межо-	Число					
Генотип	Сервис		тель-	осемене-		Коэффициент			
TCHOTAII	период,		ный	ний на	Cv	воспроизводит.			
	дней		период,	одно пло-		способности			
			дней	дотворное					
На промышленном комплексе									
Бестужевская	75.2	49.5	351	2.45	50.1	1.04			
1/2 голштин.	82.3	54.2	360	3.10	49.8	1.02			
3/4 голштин.	85.1	50.6	362	3.00	51.8	1.01			
7/8 голштин.	96.2	56.9	374	2.90.	55.2	0.97			
15/16 голштин	97.6	52.4	375	3.60	54.5	0.97			
На традиционной ферме									
Бестужевская	72.1	55.2	349	2.6	54.8	1.05			
1/2 голштин.	88.2	53.2	364	3.3	51.8	1.00			
3/4 голштин.	86.1	56.8	363	3.2	55.1	1.00			
7/8 голштин.	91.8	62.1	369	3.0	60.8	0.99			
15/16 голштин.	88.2	56.4	366	3.6	55.2	0.99			

Обращает на себя внимание не только высокий уровень продуктивности по первой лактации, но и то, что темп увеличения молочной продуктивности коров в связи с нарастанием их кровности по голштину проявляется в большей мере, чем в связи с увеличением их возраста в лактациях, когда коровы первой и старше лактации, с 7/8 кровностью по голштину, имеют относительно одинаковый уровень продуктивности. Эти данные говорят о скороспелости голштинизированных коров и о том, что использование генотипа голштинской породы для скрещивания надо вести до получения помесей ІІІ поколения — с 7/8 его кровности. Повышение кровности сверх 7/8 не только не увеличивает молочную продуктивность коров, но усиливает проявление ухудшения у них функций воспроизводства и сокращение продуктивного долголетия (табл.3 и 4).

Так, сервис-период у бестужевских животных на промышленной ферме составлял 75,2 дня, а у коров 4 поколения — 97,6 дня, или стал больше на

22,4 дня (29,8%). Число осеменений на одно оплодотворение увеличилось с 2,45 до 3,6, коэффициент воспроизводительной способности снизился с 1,04 до 0,97. Подобный характер изменения воспроизводительной способности у коров отмечается и при содержании их на традиционной ферме. Сервиспериод у животных 4 поколения увеличился на 16,1 дня, число осеменений на одно оплодотворение — на 1,0, коэффициент воспроизводительной способности снизился до 0,99 по сравнению с бестужевскими коровами.

Анализ продуктивного долголетия коров различной кровности показал, что все чистопородные коровы выбыли в возрасте первой лактации (табл.4).

Таблица 4

Продуктивное долголетие коров в зависимости от кровности и возраста в лактациях

Породность	Выбыло коров по лактациям, в %					
	1	II	III	IV		
1 поколение	23	38	14	30		
II поколение	46	34	10	10		
III поколение	48	41	9	2		
IV поколение	75	21	4	-		
Чистопородные	100	-	-	-		

Из коров четвертого поколения 75 % выбыли по первой лактации, 21% - по второй, 4% - по третьей. Наибольшую продолжительность жизни имели коровы первого и второго поколений. У коров второго и третьего поколения по первой лактации выбыло 46-48%, по второй — 34-41%, по третьей — 9-10% и по четвертой и выше — 2-10%. У помесных коров первого поколения по первой лактации выбыло 23%, а 30% лактировали четыре и больше. При анализе более дробных показателей влияние вероятной доли наследственности голштинской породы на долголетие было установлено, что помеси 7/8 кровности не уступали по продолжительности жизни помесям второго поколения. Указанный факт позволяет вести работу по использованию помесей высокой кровности с учетом их продуктивного долголетия.

Наиболее продолжительная продуктивная жизнь помесей 1 поколения, по всей вероятности детерминируется гетерозисом и поэтому они не могут быть эффективно использованы в селекционном процессе.

Выясняя в течение трех смежных лактаций, изменчивость молочной продуктивности у помесных и бестужевских коров, как ответную реакцию их генотипа на условия традиционно привязной и промышленной беспривязной технологии содержания на одинаковых по типу и уровню кормления рационах, мы установили, что при промышленной технологии содержания продуктивность животных всех генотипов была ниже (табл.5). При этом большую устойчивость к беспривязному содержанию показали коровы бестужевской породы.

Продуктивность коров при различной технологии их содержания (за 305 дней в среднем по 3-м лактациям)

	Технология содержания						±традиционная	
Порода и кров- ность	промышленная беспривязная			традиционная стойловопривязная			технология к про- мышленной	
по голштину	n	удой, кг	мол. жира, кг		удой, кг	мол. жи- ра, кг	молока, кг	молоч. жира, кг
Бестужевская	38	3602	138.3	38	3647	138.9	+ 45	+0.6
1/2	36	4399	163.6	34	4665	174.5	+266	+10.9
3/4	37	4267	157.4	36	4824	177.5	+557	+20.1
7/8	33	4568	168.1	32	5002	182.1	+434	+14.0
15/16	33	4659	174.2	32	5057	185.6	+398	+11.4

За 305 дней в среднем по 3-м лактациям они снизили надой только на 45 кг, а выход молочного жира на 0.6 кг, тогда как животные с генотипом голштинской породы - на 266-557 кг молока и на 10.9-20.1 кг молочного жира. С повышением у коров доли генотипа голштинской породы уровень снижения молочной продуктивности возрастает.

В целом же, независимо от технологии содержания, помесные животные по отношению к бестужевским продуцировали больше молока и молочного жира при содержании на промышленной ферме на 665-966 кг молока и 19.1-29.8 кг молочного жира и соответственно на 1018-1355 и 35.6-43.2 кг на традиционной ферме.

В специальных опытах изучалось и какое влияние оказывает кровность помесей на технологические свойства молока, состав молочного жира и белка. В одинаковых условиях содержания четыре аналогичные группы коров кормили, как и всех коров фермы, рационом, общая питательность которого равнялась 15.7 кормовых единиц и 1589 г. переваримого протеина.

Определение жира и белка в молоке проводили ежемесячно, а сбивание сливок 2-х кратно на лабораторном маслоизготовителе с соблюдением технологических условий. В молочном жире определяли его жирнокислотный состав, а в белке - его фракционный состав.

Установлено, что в молоке помесных коров повысилось содержание жира на 0.24 и 0.13 % (табл.6). Увеличилось содержание белка в молоке на 0.16 и 0.10. Увеличение произошло за счет повышения содержания казеина. Выход жира в молоке у бестужевских коров составил 133.6 и 176.3 кг, 174.0, 220.0 кг у помесных коров. Выход общего белка был выше у помесей и составил 158.8. 159.9. 199.0 кг против 122.3 кг у бестужевских чистопородных коров. Такой качественный состав молока характерен для так называемых "сырных пород" (симментальская, швицкая, костромская), что придает большую значимость получаемой продукции.

300ТЕХНИЯ

Таблица 6 Химический состав и технологические свойства молока коров при производстве масла

Показатели	Бестужев-	Генотип животных по голштинской породе			
	рода	1/2Бх1/2 Г	1/4Бх3/4Г	1/8Бх7/8Г	
Удой, кг.	3620	4487	4557	5720	
Содержание жира в молоке, %	3.69	3.93	3.82	3.85	
Содержание белка в молоке, %	3.38	3.54	3.51	3.48	
В том числе:					
альбумины+ глобулины, %	0.78	0.69	0.79	0.76	
казеин. %	2.60	2. 85	2.72	2:65	
в т.ч.: α- казеин, %	33.8	34.02	34.90	35.0	
β – казеин, %	55.0	52.74	52.27	51.7	
ү-казеин, %	11.2	13.24	12.83	13.3	
Величина жировых шариков, мк	3.52	2.80	2.70	3.20	
Продолжительность сбивания сливок, мин	73	72	73	64	
Содержание жира в пахте, %	0.72	0.70	0.80	0.60	
Степень использования жира, %	97.3	98.4	98.3	98.7	

Во фракциях казеина, как и в жирнокислотном составе молока, существенных различий не установлено. Непредельные жирные кислоты в жире молока составили в среднем 28.82-30.92 %, а на долю летучих жирных кислот, обусловливающих аромат и вкус сливочного масла. приходилось от 9.3 ло 10.38 %.

Качественное улучшение стада по пригодности коров к машинному доению увеличивается с нарастанием крови голштинской породы и достигает 2.46 кг/мин. Увеличивается индекс вымени до 45.70 % у коров 7/8 крови по голштинской породе.

О высоком генетическом потенциале продуктивности голштинизированного стада можно судить и по показателям коров записанных в 96 том ГТІК.

Только в период - с 1979 по 1989 годы в него записаны 368 голов. Их продуктивность колеблется от 6722 кг до 7246 кг, а отдельные животные имеют удои значительно выше. Например, корова Кулли УЛЧП 242 III-305-10142-4.37; IV-305-8419-4.43; Кефирка УЛЧП: 170 III-305-10069-3.87: IV-305-9437-3.50; Айса УЛЧП 236 III-305-9458-4.00; IV-305-8829-3.5 и др.

Содержание жира в молоке коров, записанных в ГПК, выше стандарта породы на 0,26-0,49 %. Исключительно высокую ценность имеют коровы, сочетающие обильномолочность с высокой жирностью, например: УЛЧП 242 (10142-4.37), УЛЧП 236 (9458-4.00), УЛЧП 147 (9527-4.03), УЛЧП 160 (8265-4.49).

Способность давать высокие удои с высоким содержанием жира в молоке и удерживать их в течение нескольких лактаций подряд обусловлена не только наследственностью, но и исключительной крепостью животных, созданной направленной плановой селекционной работой.

УДК 636.2:613.3

РЕГУЛЯЦИЯ ДВИГАТЕЛЬНОЙ ФУНКЦИИ ВЫМЕНИ КОРОВЫ Н.А.Любин, доктор биологических наук

Сфинктер соска играет исключительно важную роль в деятельности вымени коровы. Он обеспечивает удержание молока в емкостной системе вымени в период между доениями и во многом определяет интенсивность молоковыведения через сосковый канал во время машинного доения.

Исследование тонуса сфинктера соска явилось предметом целого ряда работ (Тверской, 1955; Городецкая, 1962; Жестоканов, 1971; Силиньш, 1970; Жуков, 1971; Вальдмен, 1977; Боков, 1986, 1988; Веглаве, Рееters, 1980; Vandeputte-Van Messom G., 1984 и др.). Однако эти работы не позволяют получить достаточно объективного представления о тонусе сфинктера соска при различном функциональном состоянии вымени коровы. В связи с этим мы изучили в первом цикле экспериментов динамику тонуса сфинктера соска, во время молоокоотдачи, вызванной экзогенным окситоцином, а также чувствительность мускулатуры сфинктера соска к этому гормону.

Опыты были проведены на трех коровах черно-пестрой породы третьей лактации, находившихся на 4-7 месяцах лактации. Среднесуточный удой составил у отдельных животных 8,2-14,1 кг. Перед началом опыта всем коровам оперативным путем в наружную срамную артерию (н.с.а.) был введен постоянный катетер, через который инъекцировали непосредственно в сосудистое русло вымени окситоцин. Длина катетера 80 см, наружный диаметр 0,12 мм. Катетер вводили в проксимальном направлении на расстоянии в 20 см. Дистальный конец катетера, закрытый стерильной пробкой, выводили в область молочного зеркала, где его фиксировали несколькими швами к коже.

Регистрацию сократительной активности стенки и сфинктера соска проводили с помощью модифицированных тензодатчиков полиграфа фирмы "Нихон-Коден" (Япония). Катетеризировали правый задний сосок и выпускали цистернальную порцию молока. На сосок надевали два П-образных датчика для регистрации циркулярной и продольной мускулатуры соска. Затем в сосковый канал вводили предварительно градуированный стерильный датчик для регистрации и измерения тонуса сфинктера соска. В течение пяти минут регистрировали исходную двигательную активность соска. Затем в наружную срамную артерию инъекцировали 0,005 МЕ окситоцина. Эта доза гормона вызывала частичную молокоотдачу, при которой не наблюдалось истечение молока из соска, в который был вставлен датчик.

После введения гормона двигательную активность изучали в течение 10 минут.