10. Практикум по агрохимии. Ред. Б.А.Ягодина. М.: ВО Агропромиздат, 1987.- 512 с.

УДК 633.111:581.1:631.822

ВЛИЯНИЕ ПЕКТИНА И МИКРОЭЛЕМЕНТОВ НА УРОЖАЙ И КАЧЕСТВО ЗЕРНА ЯРОВОЙ ПШЕНИЦЫ СОРТА Л-503

Н.И.Крончев, Е.Л.Хованская, С.Н.Сергатенко, С.С.Спирина

Наиболее перспективным мероприятием, обеспечивающим повышение урожайности и качества продукции растениеводства, является метод предпосевной обработки семян физиологически активными веществами и микроэлементами. Известно, что микроэлементы ускоряют обмен веществ, положительно действуют на синтез хлорофилла и повышают продуктивность фотосинтеза (Анспок П.И., 1978). Кроме этого, микроэлементы увеличивают устойчивость растений к неблагоприятным условиям, ускоряют развитие растений и созревание семян, что сказывается на увеличении урожайности сельскохозяйственных культур. особенно сильное воздействие наблюдается при комплексном применении микроудобрений. Пектиновые вещества растений входят в состав клеточных стенок, соединительных пластинок и, частично растворяясь в клеточном соке, оказывают значительное влияние на газообмен. В литературе имеются данные о влиянии самого пектина, продуктов его распада на рост и развитие растений (Озерцовская П.И., 1996; Крончев Н.И., Хованская Е.Л., 2000).

Материалы и методика исследований

Основная задача исследований — изучить действие пектина на продуктивность и урожайность яровой пшеницы. Исследования проводились в течение 3 лет на опытном поле УГСХА на делянках с учетной площадью 50 м 2 в четырехкратной повторности. Схема опыта:

- 1. Контроль (необработанные семена).
- 2. Пектин (0,05%).
- 3. Пектин (0,05%) + Mo (0,05%).
- 4. Пектин (0,05%) + Mn (0,05%).
- 5. Пектин (0,05%) + Mo (0,05%) + Mn (0,05%).

За 16-18 часов до посева семена обрабатывались исследуемыми растворами в расчете 2 л на 1 ц семян.

Результаты исследований и их обсуждение

Проведенные исследования показали, что предпосевная обработка семян пектином совместно с микроэлементами повышает полевую

всхожесть яровой пшеницы в среднем на 5,8% в сравнении с контролем и на 5% в варианте с применением одних микроэлементов (табл.1). На вариантах, где семена были обработаны пектином, полевая всхожесть составила 53,7%, что выше контроля на 3,3%.

1. Полевая всхожесть и сохранность яровой пшеницы Л-503 (1998-2000 гг.)

Варианты	199	8 г.	199	9 г.	2000 г.			
	полевая	сохран-	полевая	сохран-	полевая	сохран-		
	всхо-	ность рас-	всхо-	ность рас-	всхо-	ность рас-		
	жесть, %	тений, %	жесть, %	тений, %	жесть, %	тений, %		
К 47,3		73,5	52,8	72,6	51,2	73,4		
П	48,2	78,1	57,4	77,9	55,6	76,5		
П + Мо	53,3	76,5	59,0	78,6	54,1	75,8		
Π + Mn	50,7	76,3	58,2	78,2	53,7	75,4		
Π + Mo + Mn	53,5	78,6	58,4	78,4	56,8	76,8		

Наибольшее число сохранившихся растений выявлено на 5 варианте, где применялись пектин + Мо + Мп, и составляет 77,9%, что на 4,8% выше контрольного показателя. На вариантах с применением пектина число сохранившихся растений на 4,4% превышает контроль.

Чтобы выявить действие пектина и микроэлементов на продуктивность яровой пшеницы, мы проводили сноповый анализ по элементам структуры урожайности (табл.2).

Анализ показал, что количество продуктивных стеблей на 1 м^2 увеличивалось по сравнению с контрольным вариантом на всех вариантах.

На варианте совместного применения пектина, молибдена и марганца число продуктивных стеблей превышает контроль на 31,7 шт. /м² выше контрольного уровня. Число зерен в колосе, масса зерен в колосе, масса 1000 семян на всех вариантах, где применялись пектин и микроэлементы, значительно превышают контроль (табл.2).

Учет урожайности яровой пшеницы показал, что на вариантах с пектином и микроэлементами урожайность была выше по сравнению с контролем на 4,68-6,52 ц/га.

В 1998 году урожайность на контрольном варианте составила 13 ц/га. На вариантах предпосевной обработки пектином прибавка урожая 5,8 ц/га, на варианте пектин + марганец прибавка составила 5,2 ц/га. В 1999 г. наибольшая прибавка урожайности была получена на варианте, где применялись совместно пектин, молибден и марганец. В

2000 г. существенную прибавку урожайности обеспечила обработка семян пектином, молибденом и марганцем совместно и составила 6,52 ц/га. На варианте с пектином урожайность на 5,75 ц/га превышает контроль.

2. Структура урожайности яровой пшеницы Л-503 в 1998-2000 гг.

	Количество	Число зерен	Macca	Macca	Урожайность							
Варианты	продукт. стеб-	в колосе,	зерен в	1000	ц/га	при-						
	лей, шт./м ²	шт.	колосе, г	семян	щта	бавка						
1998 г.												
К	213	19,0	0,61	32,1	13,0							
П	243	19,7	0,77	39,3	18,8	+5,8						
П + Мо	242	20,4	0,74	36,3	18,0	+5,0						
$\Pi + Mn$	248	19,8	0,73	37,1	18,2	+5,8						
Π+Mo+Mn	252	19,3	0,71	37,0	18,0	+5,0						
HCP ₀₅					0,84							
1999 г.												
К	253	25,3	0,83	32,8	21,0							
П	274	26,0	0,95	36,5	26,0	+5,0						
П + Мо	278	25,9	0,92	35,5	25,5	+4,5						
Π + Mn	272	27,5	0,97	35,4	26,5	+5,5						
Π+Mo+Mn	270	27,9	0,99	35,6	26,8	+5,8						
HCP ₀₅					0,99							
		2000 г.										
К	237	24,8	0,81	32,6	19,2	-						
П	271	25,8	0,92	35,7	24,95	+5,75						
П + Мо	266	25,6	0,91	35,5	24,25	+5,05						
Π + Mn	260	26,4	0,92	34,8	23,8	+4,68						
Π+Mo+Mn	277	26,1	0,93	35,6	25,72	+6,52						
P					1,52							
HCP ₀₅					0,68							

Наряду с повышением урожайности предпосевная обработка семян способствовала улучшению качества зерна яровой пшеницы, происходило увеличение клейковинной фракции белка, повышение содержания белка в зерне. Наибольшее количество белка было выявлено на варианте совместного применения пектина, молибдена и марганца — 16,3%, что на 2,0% выше показателя контроля. Содержание клейковины на варианте совместного действия пектина, молибдена и марганца на 4,8% превышает контроль.

3. Качество зерна яровой пшеницы Л-503 (1998-2000 гг.)

1		Содержание белка								Содержание клейковины					
	1998 г.				1999 г.		2000 г.		1998 г.		1999 г.		2000 г.		
	об- щий аз от	%	±	об- щий азот	%	±	об- щий азот	%	±	%	±	%	±	%	±
К	2,49	14,2		2,56	14,6	_	2,49	14,2	_	22,8	_	24,6	_	22,6	_
П	2,74	15,6	+1,4	2,77	15,8	+1,2	2,70	15,4	+1,2	26,7	+3,9	27,1	+2,5	27,7	+5,1
П+Мо	2,79	15,9	+1,7	2,82	16,1	+1,5	2,77	15,8	+1,6	27,2	+4,4	27,6	+3,0	27,1	+3,5
П+Мп	2,82	16,1	+1,9	2,84	16,2	+1,6	2,74	15,6	+1,4	27,6	+4,8	28,1	+3,5	27,8	+5,2
Π+Mo+Mn	2,88	16,4	+2,2	2,89	16,5	+1,9	2,84	16,2	+2,0	27,8	+5,0	28,2	+3,6	28,4	+5,8

Выволы

Таким образом, обработка семян пектином с микроэлементами (Mo+Mn) способствует повышению полевой всхожести, сохранности растений, повышению урожайности и качества зерна яровой пшеницы сорта Л-503.

Литература

- 1. Анспок П.И. Микроудобрения. Л.: Агропромиздат, 1990.
- 2. Анспок П.И. Микроудобрения. М.: Колос, 1978.
- 3. Битюцкий Н.П., Кащенко А.С. Действие синтетических комплексов и комплексантов на химический состав растений. // Агрохимия, 1991, № 10.
 - 4. Костин В.И., Исайчев В.А. //Вестник УГСХА, 2000, 1.
 - 5. Крончев Н.И., Хованская Е.Л. // Вестник УГСХА, 2000, 1.
- 6. Озерцовская П.И. Олигосахариды, как регуляторные молекулы растений. // Физиология растений, 1996, т.43, 5.
 - 7. Сапожникова Е.В. Пектиновые вещества плодов. / М.: Наука, 1965.

УДК 631.531.1

ВЛИЯНИЕ ИОНИЗИРУЮЩЕЙ РАДИАЦИИ И МИКРОЭЛЕМЕНТОВ НА ПОСЕВНЫЕ КАЧЕСТВА СЕМЯН

С.Н.Решетникова

Показателями биологической полноценности семян являются их урожайные свойства, т.е. способность сформировать высокопродуктивные растения. Дружные и полноценные всходы оптимальной густоты являются одним из главных факторов для получения высоких и устойчивых урожаев. К числу наиболее существенных показателей, определяющих урожайные свойства семян, следует отнести их посевные качества, всхожесть и силу роста, энергию прорастания.

Данные многочисленных исследований убедительно свидетельствуют о положительном воздействии стимулирующих доз ионизирующей радиации на посевные качества и, следовательно, на урожайные свойства семян сельскохозяйственных культур [1, 2, 3, 4].

Значительное влияние на посевные качества семян может оказать обработка солями микроэлементов, особенно если семена выращивались при недостатке некоторых из них в почве. О положительном влиянии микроэлементов, в частности меди и цинка, сообщается во многих литературных источниках [5, 6, 8, 9, 10].

Исследование совместного действия ионизирующей радиации и микроэлементов представляет научный интерес и может дать новые