Литература

- 1. Корн Г., Корн Т. Справочник по математике М.:Наука, 1984, 832c.
- 2.Лезин П.П. Основы надежности сельскохозяйственной техники. Саранск 1997. 223с.
 - 3. Справочник по надежности. М.: Мир, 1969. 337с.
- 4. Варнаков В.В. и др. Технический сервис машин сельскохозяйственного назначения. М.: Колос, 2000. 256с.

УДК 631.43

СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ БЕЗРАЗБОРНОГО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ ДИЗЕЛЬНЫХ ДВИГАТЕЛЕЙ

А.Н.Еремеев, студент 5 курса Научный рукодитель В.В.Варнаков, доктор технических наук, профессор

Топливная аппаратура является одной из основных систем тракторных и комбайновых дизелей, которая в значительной степени предопределяет их мощностные и экономические показатели, надежность и стабильность работы. В сельскохозяйственном производстве при эксплуатации дизелей до 50% отказов приходится на топливную аппаратуру, причиной которых является недостаточная надежность, в частности плунжерных пар.

Эффективность технического обслуживания и ремонта топливной аппаратуры не в последнюю очередь зависит от степени совершенства методов и средств диагностирования её технического состояния.

Существующие методы и средства для определения технического состояния плунжерных пар рядных топливных насосов не отвечают требованиям точности и качества. Комплектация топливных насосов при их ремонте плунжерными парами, признанными годными к дальнейшей эксплуатации существующими методами и средствами, приводит к появлению отказов по неравномерности подачи топлива при наработке 900...1200 мото-часов. В связи с этим научное обоснование нового критерия, разработка метода и простого относительного средства для достоверной оценки технического состояния плунжерных пар рядных топливных насосов является актуаль-

ной задачей.

Анализ существующих способов оценки технического состояния плунжерных пар, в том числе авторских свидетельств на изобретения, показал, что наиболее перспективным направлением является определение работоспособности плунжерных пар в динамике. Установлено, что с целью определения технического состояния и совершенствования дефектации и комплектации плунжерных пар необходимо знать абсолютную величину утечек топлива, проходящих через местный износ, т.к. эти утечки определяют мощностные и экономические показатели дизеля. Для этого необходимо уточнить расчет утечек топлива с учетом постоянно изменяющегося во времени зазора, который зависит от величины местного износа по длине плунжера и втулки, изменяющегося давления.

Известные способы диагностики плунжерной пары заключается в том, что топливо в подплунжерную полость подают под давлением при перекрытых плунжером окнах втулки [1].

Однако такие способы отличаются сравнительно высокой сложностью и повышением затрат на осуществление операций диагностики.

Также известен способ безразборной оценки износа плунжерной пары топливного насоса дизеля, заключающийся в том, что измеряют гидродинамические параметры процесса впрыска контрольной форсункой и сравнивают их с эталонными данными. При этом определяется и нормируется разность цикловых подач на пусковом и номинальном режиме работы топливного насоса [2].

Недостатком этого способа оценки износа плунжерной пары является возможность появления значительных ошибок в связи с тем, что измерение цикловых подач происходит при разных активных ходах плунжера и на разных частотах вращения коленчатого вала двигателя, которые могут меняться в зависимости от разрегулировок момента начала действия регулятора и пускового обогатителя.

Целью усовершенствования является повышение точности оценки износа плунжерной пары топливного насоса двигателя и производительности процесса диагностики.

Это достигается тем, что измерение гидродинамических

параметров производят при двух различных уровнях остаточного давления и полученные результаты сравнивают с эталонными.

При этом в качестве гидродинамических параметров используют величину остаточного давления, динамическую составляющую давления начала подъема иглы форсунки и продолжительность ее подъема.

Сущность усовершенствования заключается в том, что для эталонной плунжерной пары, у которой отсутствуют износы, величина утечек топлива незначительна и не зависит от величины давления в надплунжерном пространстве ($P_{\rm н.п.}$), которое прямо пропорционально зависит от остаточного давления ($P_{\rm ост}$) в линии нагнетания. При этом сокращение продолжительности нагнетания компенсируется увеличением объемной скорости подачи топлива. С появлением у плунжерной пары износов величина утечек топлива растет с увеличением $P_{\rm ост.}$ Баланс топлива между топливным насосом, нагнетательным топливопроводом и форсункой иглы можно с достаточной точностью описать через параметры контрольной форсунки, измеряя продолжительность подъема иглы форсунки $\tau_{\rm иг}$, динамическую составляющую давления начала подъема иглы $P_{\rm иг}$ и остаточное давление в нагнетательном топливопроводе $P_{\rm ост.}$

Увеличение $P_{\text{ост}}$ достигается усилением затяжки пружины форсунки или уменьшением максимального подъема иглы форсунки ($h_{\text{иг}}^{\text{макс}}$). При этом продолжительность подъема иглы ($\tau_{\text{иг}}$) в первом случае будет уменьшаться, а во втором - увеличиваться. Поэтому представляется возможным поддерживать постоянной величину продолжительности подъема иглы $\tau_{\text{иг}}$ при увеличении остаточного давления $P_{\text{ост}}$, компенсируя влияние увеличения усилия затяжки пружины уменьшением максимального подъема иглы.

Следовательно, в качестве диагностического параметра, оценивающего износ плунжерной пары, можно принять значение, определяемое по формуле:

$$\frac{\Delta \tau_{\text{M}\Gamma}}{P_{\text{OCT}}} = \frac{\tau_{\text{M}\Gamma}^{\prime} - \tau_{\text{M}\Gamma}^{\prime\prime}}{P_{\text{OCT}}^{\prime\prime} - P_{\text{OCT}}^{\prime}} \left[\frac{\text{M}c}{M\Pi a} \right]$$

Предлагаемый способ осуществляют следующим образом. Определяют первоначальную (эталонную) продолжитель-

ность подъема иглы $\tau'_{\text{иг}}$ и динамическую составляющую давления начала подъема иглы распылителя $P'_{\text{иг}}$, например, для усилия затяжки пружины форсунки. Величину максимального подъема иглы распылителя $h_{\text{иг}}^{\text{макс}}$ выбирают такой, чтобы остаточное давление $P_{\text{ост}}$ было не ниже $1\dots 1.5$ МПа.

Увеличивают давление затяжки на 5...7 МПа. При этом продолжительность подъема иглы $\tau_{\text{иг}}$ уменьшается, а давление $P_{\text{ост}}$ и $P_{\text{иг}}$ возрастут.

Уменьшением максимального подъема иглы распылителя восстанавливают первоначальное значение давления $P'_{\mu\Gamma}$ и измеряют продолжительность подъема иглы $\tau''_{\mu\Gamma}$ и остаточное давле-

ние $P^{''}_{\text{ ост}}$. Определяют соотношение $\frac{\Delta au_{\text{иг}}}{P_{\text{ ост}}}$. Для получения кон-

трольных форсунок к испытуемой секции топливного насоса необходимо использовать переключатели подачи топлива. Для регистрации гидродинамических параметров процесса впрыска в контрольной форсунке необходимо предусмотреть датчик давления топлива и датчик перемещения иглы распылителя.

При диагностировании скоростной режим двигателя должен быть как можно ближе к минимально устойчивому.

Помимо этого были рассчитаны и построены кривые изменения величины волны давления плунжерных пар, имеющих различный износ в зависимости от величины геометрического активного хода плунжера на пусковых оборотах (рис.1.) Первая кривая построена по данным новой плунжерной пары, зазоры которой соответствует требованиям ГОСТ и не превышает 2 мкм, у этой пары отсутствует местный износ. Вторая кривая построена по данным плунжерной пары, имеющей максимальную площадь местного износа, равную 0.09×10^{-6} м² и кольцевой зазор, равный 4 мкм.

Изменение величины волны давления, представленные на рис. 1, объясняется следующими положениями. В первый период при перекрытии впускного окна втулки, топливо начинает сжиматься и, с увеличением давления, открывается нагнетательный клапан. Затем, при дальнейшем движении плунжера возрастает давление в топливопроводе, начинает подниматься игла распылителя. Несмотря на открытие иглы форсунки, дав-

ление в системе будет расти, т.к. количество топлива, вытесняемое плунжером насоса. намного больше того количества, которое вытекает через сопловые отверстия форсунки в камеру сгорания дизеля. Рост волны давления будет продолжаться до начала отсечки. После начала отсечки нагнетательный клапан садится на гнездо и отсоединяет топливопровод от полости насоса. Подача топлива в камеру сгорания осуществляется за счет энергии, аккумулированной в топливе в процессе его сжатия, и продолжается до момента посадки иглы.

Рис. 1. Изменение величины активного хода плунжера на пусковом режиме.

Предлагаемый способ оценки износа плунжерной пары топливного насоса дизеля обеспечивает по сравнению с существующими способами повышение точности результатов диагностирования. Гидравлические параметры контрольной форсунки, топливопроводов и насоса, создавая неопределенность при получении конкретных значений параметров $P_{\mu r}$, $P_{\text{ост}}$ и $\tau_{\mu r}$, вместе с

тем не влияют на отношение $\frac{\Delta \tau_{\text{иг}}}{\Delta P_{\text{ост}}}$

При реализации этого способа упрощается подбор датчиков давления и способа, поскольку установленный контур давления при диагностировании отключен. Проведение измерения гидродинамических параметров на одном скоростном режиме не требует специальных мер для имитации и контроля загрузки двигателя, что позволяет снизить трудоемкость диагностирования топливных насосов.

Литература

- 1. Авторское свидетельство СССР №773303, кл. F02M65100, 1980.
- 2. Антипов В.В. Износ прецизионных деталей и нарушение характеристики топливной аппаратуры дизелей. М., Машиностроение, 1972, с.168.
- 3. Авторское свидетельство СССР №767385 кл. F02M65100, 1980.

УДК 631.3

КОМБИНИРОВАННАЯ ОБРАБОТКА СТАЛЬНЫХ И ЧУГУННЫХ ПОВЕРХНОСТЕЙ ИЗДЕЛИЙ

В.И.Жиганов, С.А.Яковлев, кандидаты технических наук

Разработка технологий, существенно повышающих износостойкость рабочих поверхностей высоконагруженных деталей, представляет собой весьма сложную задачу. Эта проблема особенно актуальна в ремонтном производстве.

Так как во многих случаях работоспособность деталей и их предельное состояние зависит только от характеристик поверхностного слоя, то для формирования свойств материала таких деталей используют традиционные методы термической и химической обработки, а также современные методы воздействия на поверхность концентрированными потоками энергии, например, с помощью лазера [1]. На обработанной лазером поверхности трения в процессе ее изнашивания образуется специфический слой определенной микрогеометрии с высокой твердостью, увеличенной маслоемкостью и повышенной износостойкостью. Однако технология лазерной обработки является