- культур и его определение по урожайности основной продукции. М.: Агрохимия, 1977, №8, с.36.
- 10. Морозов В.И., Куликова А.Х., Подсевалов М.И., Петухов Е.А., Вандышев И.А. Влияние севооборотов на баланс гумуса в выщелоченном черноземе лесостепи Поволжья. Агрохимия, 1994, № 10, с.3-10.
- Доспехов Б.А. Методика опытного дела. М.: Колос, 1973, 335 с.
- 12. Экономическое положение Ульяновской области за 1996 2000 гг. ЦСУ, Ульяновск, 2001.
- 13. Кольбе Г., Штумпе Г. Солома как удобрение. Перев. с нем. А.Н.Кулюкина. М., 1972, 87 с.
- 14. Колсанов Г.В., Евдокимов В.С., Чехмакин В.В. Динамика агрохимических показателей почв Ульяновской области за 30 лет. В кн: «Дифференциация системы земледелия и плодородие чернозема лесостепи Поволжья». Труды УГСХА. Ульяновск, 1996, с.83-98.

УДК 633.085 + 631.82 + 633.15

ВЛИЯНИЕ РЖАНОЙ СОЛОМЫ И МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА КАЧЕСТВО КУКУРУЗЫ НА СИЛОС

Г.В.Колсанов, А.Х.Куликова, Н.В.Хвостов

В условиях лесостепи Поволжья солома до настоящего времени остается слабо изученным и мало используемым удобрением. В наших исследованиях различных видов соломы зернопропашного севооборота ржаная солома вносилась под кукурузу на силос.

Одним из существенных недостатков ржаной соломы, как и соломы других злаковых культур, является низкое содержание зольных элементов и азота (1). Это нередко приводит к снижению урожайности и качества удобряемых культур, которое может компенсироваться внесением вместе с соломой азотных добавок или полного минерального удобрения (2).

При всех положительных качествах кукурузы как сочного корма в ней мало азота и связанного с ним протеина (3). В связи

с этим целью данной работы явилось выявление роли ржаной соломы и различных ее сочетаний с минеральными удобрениями в изменении содержания азота, фосфора и калия в возделываемой на силос кукурузе.

Качественной оценке был подвергнут урожай кукурузы, выращиваемой в стационарном пятипольном севообороте кафедры почвоведения, агрохимии и агроэкологии на опытном поле Ульяновской ГСХА. Почва опытного поля — чернозем типичный среднегумусный с содержанием по полям севооборота гумуса 4,5-4,7%, доступных растениям форм фосфора и калия по Чирикову соответственно 180-262 и 188-269 мг/кг сухой почвы, рН_{сол.} 6,4-6,8.

Под кукурузу гибрида Молдавский 256 вносился весь фактический урожай измельченной с помощью ПУН – 5 ржаной соломы вместе с азотными добавками в виде мочевины и полным минеральным удобрением. Удобрения заделывались сначала под послеуборочное лущение стерни, затем под отвальную вспашку. Полное минеральное удобрение (фон 1, табл.) рассчитывалось нормативно балансовым методом на урожай зеленой массы в 37,0 т/га, фон 2 - пониженный с учетом использования питательных веществ из ранее вносимой в севообороте соломы. Дозы азотных добавок к соломе составляли 10 и 20 кг на 1 тонну. Варианты опыта представлены в таблице. Площадь делянок 120 m^2 , учетная 16.8 m^2 . Расположение вариантов двухярусное рендомизированное, повторность по полям 3-4 кратная. Технология возделывания кукурузы на силос - общепринятая в Ульяновской области с уборкой урожая в фазу молочно-восковой спелости зерна в конце третьей декады августа - начале сентября. В растительных образцах (отдельно стебли, листья, початки) азот, фосфор и калий определялись по ГОСТ 13496.4 - 84. Перевод азота в сырой протеин произведен по коэффициенту 6,0. Статистическая обработка качественных показателей произведена дисперсионным методом.

Влияние удобрений на содержание азота, фосфора и калия в урожае кукурузы на силос гибрида Молдавский 256 в % на абсолютно сухое вещество

тиорида плондавения 200 в ина ассолютию судовещество													
Варианты опыта	Азот (N)				Проте-	Фосфор (P ₂ O ₅)				Калий (К ₂ О)			
	1998 г.	1999 г.	2000 r.	сред- нее	ин, среднее	1998 г.	1999 г.	2000 г.	2001 г.	1998 г.	1999 г.	2000 г.	среднее
Без удобрений	1,07	0,96	0,83	0,95	5,70	0,39	0,47	0,36	0,41	1,18	1,48	1,40	1,35
Ржаная соло- ма	1,07	1,02	1,08	1,06	6,36	0,39	0,52	0,38	0,43	1,22	1,48	1,50	1,40
Солома + N10 кг/т	1,06	1,04	1,06	1,05	6,30	0,39	0,52	0,37	0,43	1,17	1,55	1,36	1,36
Солома + N20 кг/т	1,06	1,05	1,05	1,05	6,30	0,38	0,48	0,38	0,41	1,11	1,59	1,45	1,38
N146 P45 К148 – фон 1	1,11	1,02	0,88	1,00	6,00	0,38	0,48	0,37	0,41	1,24	1,47	1,74	1,48
Фон 1 + ржа- ная солома	1,08	1,05	0,94	1,02	6,12	0,38	0,50	0,37	0,42	1,24	1,65	1,62	1,50
Фон 1 + соло- ма + N10 кг/т	1,07	1,03	0,99	1,03	6,18	0,36	0,45	0,38	0,40	1,28	1,52	1,52	1,44
Фон 1 + соло- ма + N20 кг/т	1,13	1,10	1,02	1,08	6,48	0,39	0,41	0,40	0,40	1,19	1,71	1,67	1,52
N106P30K81- фон2+солома+ N10кг/т	1,00	0,87	0,95	0,94	5,64	0,38	0,40	0,37	0,38	1,27	1,46	1,68	1,47
HCP ₀₅ , %	0,05	0,07	0,06	0,09	0,54	0,03	0,04	0,02	0,05	0,08	0,11	0,12	0,17
Средн. дозы соломы, т/га	4,8	3,4	7,2	5,1	-	-	-	-	-	-	•	•	-

Содержание азота в сухой массе кукурузы не удобренного варианта по годам колебалось от 1,07% в засушливом 1998 до 0,83% в среднеувлажненном 2000 году (табл.). Колебания достаточно существенны. В результате среднее содержание азота в абсолютно сухом веществе убираемой на силос кукурузы составило 0,95 %. В переводе на убираемую массу урожайностью 33,4 т/га и 25% сухого вещества содержание сырого протеина оказалось равным 14,2 г/кг.

Внесение ржаной соломы под кукурузу (вар.2) в засушливом 1998 году по сравнению с неудобренным вариантом содержания азота в массе не изменило. В 1999 году внесение одной соломы повысило содержание азота в кукурузе на 0,06% - несущественно, а в 2000 году – на 0,25% - существенно. Несмотря на некоторую нестабильность полученных результатов, неоспоримым является тот факт, что ржаная солома в качестве удобрения не снижает, а повышает содержание азота в урожае кукурузы до существенных величин.

Использование азотных добавок к соломе в дозах 10 и 20 кг/т (вар.3,4) не вызывало заметного увеличения азота (и протеина) в урожае кукурузы. Это свидетельствует о том, что при данном уровне фосфорно-калийного питания дополнительное азотное удобрение нерационально.

Применение полного минерального удобрения заметно на 0,05%, но несущественно повысило содержание азота в кукурузе. На этом фоне внесение ржаной соломы (вар.6) также дало незначительное повышение азота (и протеина). И лишь дополнительное к минеральному фону и соломе внесение азота из расчета 20 кг/тонну соломы позволило существенно повысить содержание азота, доведя количество сырого протеина в сухой кукурузной массе до 6,48% против 5,70% в неудобренном варианте.

На ограниченном минеральном фоне (вар.9) применение соломы даже совместно с азотной добавкой в дозе 10 кг/т в двух из трех лет исследований имело даже некоторый отрицательный результат. В итоге в целом за 3 года содержание азота в кукурузе в вар.9 – N106 P30 K81 + солома + N10 кг/т по сравнению с неудобренным вариантом не изменилось.

Содержание фосфора (P_2O_5) в урожае кукурузы на силос неудобренного варианта составило 0,41% на сухое вещество или 0,10% в зеленой массе 75% влажности. Изменения его по годам от 0,09% в 2000 году до 0,02% в 1999 году оказались также существенны как и азота.

Влияние удобрений на содержание фосфора в урожае кукурузы по годам в отдельных вариантах иногда достигало существенных изменений (табл.), но в целом за 3 года оно оказалось очень слабым и ни внесение соломы, ни азотных добавок, ни полного минерального удобрения его существенно не изменили.

Содержание калия (K_2O) в урожае кукурузы в неудобренном варианте в среднем за 3 года составило 1,35 % на абсолютно сухое вещество или 0,34 % в кукурузной массе 75% влажности. По годам изменения его достаточно существенны, но не так закономерно связаны с погодными условиями как у азота.

Влияние отдельных видов удобрений на содержание калия в урожае не имеет ярко выраженной закономерности. Однако в целом проявилась общая тенденция: во всех удобренных вариантах, включая отдельное внесение соломы, содержание калия в кукурузе было несколько выше, чем в неудобренном варианте, а в варианте 8 – NPK + солома + N20 кг/т его увеличение оказалось близко к существенному.

На основании проведенных исследований можно сделать следующие выводы:

- 1. Содержание питательных веществ в кукурузе на силос гибрида Молдавский 256 урожайностью в 27-44 т/га и влажностью 75% составило: азота (N)-0,24%, фосфора (P_2O_5) 0,10%, калия (K_2O) 0,35% с изменениями по годам от N 0,27%, P 0,12%, K 0,33% в засушливые годы до N 0,21%, P 0,09%, K 0,35% в умеренно увлажненном.
- 2. Внесение под кукурузу фактического по годам урожая ржаной соломы независимо от доз повышает содержание азота до существенных величин.
- Азотные добавки к ржаной соломе в дозах 10 и 20 кг/тонну, или соответственно в среднем 51 и 102 кг/га по сравнению с внесением одной соломы качество кукурузной массы существенно не изменяют.

- 4. Применение минерального удобрения как в полной N146 P45 K148 дозе, так и в пониженной N106 P30 K81 существенного влияния на качество кукурузы на силос не оказывают.
- 5. При совместном внесении ржаной соломы с полным минеральным удобрением появляется тенденция повышения качества кукурузной массы, в данном сочетании существенному на относительных 14% увеличению в кукурузной массе азота и протеина способствует лишь дополнительное внесение минерального азота в дозе 20 кг/т.
- 6. Влияние удобрений на содержание в урожае кукурузы фосфора – несущественно, на содержание калия – имеет тенденцию к увеличению до существенно значимых изменений.

Литература

- 1. Пустовой И.В., Филин В.И., Корольков А.В. Практикум по агрохимии. Ред. И.В.Пустовой. Изд. 5-е. М.: Колос. 1995. 305 с.
- 2. Использование соломы как органического удобрения. M.: Наука. 1980. 268 с.
- 3. Справочник. Состав и питательность кормов (союзные республики, экономические районы РСФСР). Под ред. И.С.Шумилина. М.: Агропромиздат. 1986. 301 с.

УДК 631.51: 632.51

ОБРАБОТКА ПОЧВЫ В ТЕХНОЛОГИИ ВОЗДЕЛЫВАНИЯ ЯРОВОЙ ПШЕНИЦЫ

А.Х. КУЛИКОВА, С.Е. ЕРОФЕЕВ

Яровая пшеница (наравне с озимой) одна из ведущих продовольственных зерновых культур лесостепи Поволжья. В структуре посевных площадей Ульяновской области она занимает от 75 до 100 тыс.га. Однако средняя урожайность яровой пшеницы за последнее десятилетие не превышает 12,8 ц/га, а размах вариации по годам достигает 15 ц/га. Имеются острые проблемы с качеством зерна, которое помимо генетических особенностей и комплекса почвенно-климатических условий в