УДК 631.81:633.112

АКТИВНОСТЬ КАТАЛАЗЫ И ПЕРОКСИДАЗЫ ПРИ ПРОРАСТАНИИ СЕМЯН ОЗИМОЙ ПШЕНИЦЫ

Зиновьева Д.Е., студентка 4 курса факультета агротехнологий, земельных ресурсов и пищевых производств Научный руководитель – Мударисов Ф.А., кандидат сельскохозяйственных наук, доцент ФГБОУ ВО Ульяновский ГАУ

Ключевые слова: каталаза, пероксидаза, микроэлементы-синергисты.

В данной статье рассмотрено влияние микроэлементов-синергистов на активность каталазы и пероксидазы при прорастании семян озимой пшеницы.

Растительный организм представляет собой целостную саморегулирующиеся систему, воздействие на которую раздражителем любой природы, в том числе и химической, сопровождается адаптивной реакцией, обусловленной различными биохимическими, физиологическими, морфоанотомическими механизмами [1,2,3].

Обработка семян биологически активными веществами способствует развитию более здоровых и крепких растений с интенсивным типом метаболизма. При наступлении стресса в таких растениях более энергично происходит перестройка, связанная с адаптацией к неблагоприятному фактору среды [4,5].

При прорастании в семенах образуются активные формы кислорода, которые могут вызвать окислительное повреждение тканей. Защита от их действия осуществляется за счет работы высокоактивной антиоксидантной системы, в состав которой входят также каталаза и пероксидаза. Их действие сводится к подавлению образования свободных радикалов, поддержанию нормального их уровня [6,7].

В таблице 1 представлена активность каталазы в семенах, подвергнутых предпосевной обработке микроэлементами – синергистами.

В покоящихся семенах активность каталазы составляет 7-10 мкмоль разлагаемой перекиси водорода. На контроле возрастание активности фермента до максимальных значений происходит на протяжении 72 часов, после чего происходит снижение активности. К этому времени активность каталазы возрастает по отношению к 1-ым суткам в 6-7 раз.

Таблица 1 – Активность каталазы в проростках озимой пшеницы, микромоль ${\rm H_2O_2}$, разложившейся за 1 мин в расчете на 1 г сухого материала

Вариант	Время, час							
	12	24	48	72	96			
Контроль	12.58±0.91	23.24±0.61	60.30±1.11	92.41±0.81	69.03±0.83			
Mn	13.01±0.72	24.62±0.31	64.21±1.15	95.32±0.91	72.10±0.89			
Zn	13.62±0.53	24.83±0.41	64.78±0.90	96.01±0.88	73.00±0.91			
Mn+Zn	13.78±0.81	26.32±0.64	66.13±0.01	97.32±0.75	74.80±0.86			

Таблица 2 – Активность пероксидазы в прорастающих семенах озимой пшеницы под влиянием обработки, изменение оптической плотности за 1 с/1 г сырой массы

Вариант	Время, сутки							
	1	2	3	4	5	6		
Контроль	0.47±0.02	1.29±0.07	1.31±0.09	1.72±0.10	1.18±0.05	0.86±0.06		
Марганец	0.66±0.02	1.48±0.12	1.54±0.08	1.61±0.12	1.21±0.04	0.91±0.06		
Цинк	0.70±0.01	1.56±0.11	1.64±0.12	1.78±0.09	1.81±0.06	1.36±0.08		
Mn+Zn	0.74±0.02	1.64±0.09	1.76±0.08	1.86±0.11	1.91±0.14	1.49±0.10		

Наибольшие значения активности отмечены, где активность превышает контроля 5,3-8,3%. На 4-ые сутки происходит снижение активности, как на опытных вариантах, так и на контроле.

Пероксидаза входит в состав антиоксидантной системы растений, активность которой определяет их уровень устойчивости к различным воздействующим факторам в процессе онтогенеза. Фермент обладает достаточно широкой субстратной специфичностью и может проявлять свойства оксидазы. Активность пероксидазы возрастает с увеличением дыхания семян при выходе их из состояния вынужденного покоя. Высокое число изоэнзимов в семенах пшеницы позволяет предполагать участие данного фермента в процессах прорастания [8].

Изучена динамика активности пероксидазы в семенах озимой пшеницы в процессе набухания и прорастания. Результаты исследований представлены в таблице 2. Существенные изменения активности фермента отмечены с 1 дня прорастания. На вторые сутки активность пероксидазы возрастает почти в 2 раза на контроле, на опытных вариантах в 2,5 раза по сравнению с первыми сутками. Наибольшая активность фермента наблюдается на 4-ые и

5-ые сутки, причем на всех вариантах превышает контроль в 1,4 раза и в 1,5 раза (марганец+цинк). К шестым суткам активность пероксидазы падает. На всех вариантах, включая и контроль. Наибольшая активность данного фермента на протяжении опыта наблюдается под влиянием цинка, марганца, т.к. здесь наблюдается относительный синергизм действий.

Таким образом, обработка семян микроэлементами оказала существенное влияние на активность каталазы и пероксидазы в проростках из семян, подвергнутых предпосевной обработке.

Библиографический список:

- 1. Адаптивные реакции культурных растений на биотические и абиотические стрессы / М. А. Зарубина, Н. Н. Гусева, А. Г. Жакоте [и др.] // Сельскохозяйственная биология. 1988. № 2. С. 111 117.
- 2. Костин, В. И. Влияние микроэлементов-синергистов на хлебопекарные свойства зерна озимой пшеницы / В. И. Костин, Ф. А. Мударисов, А. И. Кривова // Вестник РАЕН. 2014. Т.14, № 6. С. 54-57.
- 3. Костин, В. И. Теоретические основы метода предпосевной обработки семян различными физическими и химическими факторами / В. И. Костин // Энергосберегающие технологии в растениеводстве: сборник материалов Всероссийской научно-практической конфернии. Пенза, 2005. С. 3 11.
- 4. Жирмунская, Н. М. Физиологические аспекты применения регуляторов роста для повышения засухоустойчивости растений / Н. М. Жирмунская, А. А. Шаповалов // Агрохимия. 1987. № 6. С. 102 119.
- 5. Мударисов, Ф. А. Перспективы использования микроэлементов-синергистов в технологии озимой пшеницы / Ф. А. Мударисов, А. И. Кривова, В. И. Костин // Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения: материалы VII Международной научнопрактической конференции. 2016. С. 288-291.
- 6. Верхотуров, В. В. Взаимное влияние пероксидазы и низкомолекулярных антиоксидантов при прорастании семян пшеницы: автореферат диссертации на соискание ученой степени кандидата биологических наук / Верхотуров В. В. Иркутск, 1999. 19 с.
- 7. Внутриклеточный окислительный стресс и аппотоз / Н. К. Зенков, Е. Б. Меньшикова, Н. Н. Вольский, В. А. Козлов // Успехи современной биологии. 1999. Т. 119, № 5. С. 440 450.
- 8. Покровская, Н. Ф. Компонентный состав глиадинов, амилазы и пероксидазы зерна высокобелковых сортов мягкой пшеницы Австралии / Н. Ф. Покровская, М. Р. Рустамова // Бюллетень ВНИИР. 1977. Вып. 73. С. 21 24.

THE ACTIVITY OF CATALASE AND PEROXIDASE IN SPRING OF SEEDS OF WINTER WHEAT

Zinovieva D.E.

Key words: catalase, peroxidase, microelements-synergists.

This article discusses the effect of synergistic trace elements on the activity of catalase and peroxidase during germination of winter wheat seeds.