жирных алифатических кислот; 0,007 глицерина, 0,0005% воды и $12,76 \square 10^{-6}$ % механических примесей. Все перечисленные вещества можно отнести к примесям, присутствующим в рапсовом масле.

2. Элементарный (молекулярный) состав и низшая теплота сгорания минерально-растительных топлив

Вид топлива	Элементар	$Q_{_{\rm H}}$,		
	C	Н	O	МДж/кг
100% ДТ	0,87	0,126	0,004	42,437
100% PM	0,7576	0,1223	0,12	42,586
25% РМ + 75% ДТ	0,8419	0,12508	0,033	41,158
50% PM + 50% ДТ	0,8138	0,12415	0,062	39,79
75% PM + 25% ДТ	0,7857	0,1232	0,091	38,423

Для обеспечения нормативных технико-экономических и экологических показателей дизелей автотракторной техники требуется минерально-растительное топливо, имеющее те же эксплуатационные характеристики, что и товарное минеральное дизельное топливо. При этом фракционный состав биотоплива и дизельного топлива должен быть одинаковым, что сделает биотопливо конкурентно способным, с точки зрения эксплуатационных свойств, даже с лучшими марками товарного минерального дизельного топлива.

Литература:.

 1. Рапсовое биотопливо / А.П. Уханов, В.А. Рачкин, Д.А. Уханов. – Пенза: РИО ПГСХА, $2008.-229~{\rm c}.$

ОСНОВНАЯ ОБРАБОТКА ПОЧВЫ КАК ФАКТОР АКТИВИЗАЦИИ БОБОВО-РИЗОБИАЛЬНОГО СИМБИОЗА И ФОРМИРОВАНИЯ УРОЖАЙНОСТИ ГОРОХА

Пятаева А.В., Линькова П.В., студенты 5-ого курса Научный руководитель – к. с.-х. н., доцент И.В. Антонов

В современном земледелии особую актуальность приобретает давняя проблема использования биологического азота за счет его фиксации из атмосферы бобовыми культурами (в частности, горохом) в симбиозе с клубеньковыми бактериями. Однако, зачастую, оно ограничивается комплексом неблагоприятных условий, особенно почвенно-климатических. В их оптимизации преобладающая роль отводится агротехнике возделывания культур, включая такой важный ее прием как обработка почвы. Исходя из этого, целью наших исследований явилось изучение влияния систем обработки почвы на активность бобово-ризобиального симбиоза и формирование урожайности гороха.

Исследования проводились с использованием общепринятых методов на участке кафедры почвоведения, агрохимии и агроэкологии опытного поля

УГСХА. Системы обработки почвы изучались в шестипольном полевом зернотравяном севообороте: вико-овсяная смесь (сидеральный пар) — озимая рожь (пшеница) — смесь многолетних бобово-злаковых трав в выводном поле — яровая пшеница — горох — овес. Схема опыта включала 4 варианта систем обработки почвы: отвальную (контроль), плоскорезную, комбинированную в севообороте (с отвальной под горох) и поверхностную. Полевой опыт заложен в 1988 году в 3-х кратной повторности на черноземе выщелоченном среднемощном среднегумусном тяжелосуглинистом. Общая площадь делянки — 150 м², учетная — 80 м², их расположение — систематическое.

2004...2006 гг. по метеорологическим показателям в целом были относительно благоприятными для растений, достаточно увлажненными и теплообеспеченными. Согласно полученным результатам исследований, в этих условиях отмечалось характерное влияние систем обработки почвы на активность бобово-ризобиального симбиоза гороха (табл. 1).

На начальной стадии формирования азотфиксирующих клубеньков на корнях гороха в фенофазе всходы — ветвление влияние обработки почвы на их симбиотическую активность было менее заметно, чем в последующие периоды. Более выраженная тенденция снижения активности симбиотического аппарата гороха уже с фенофазы всходы — ветвление наблюдалась в условиях глубокого плоскорезного рыхления почвы. На его фоне накопление активных клубеньков в этот период снижалось в среднем на 1...5 мг/раст.

Таблица 1. Влияние систем обработки почвы на накопление массы активных клубеньков на корнях гороха, мг/раст. (в воздушно-сухом состоянии)

Фенофазы вегетации	Годы исследо- ваний	Система обработки почвы				
		Отвальная (контроль)	Плоскорез- ная	Комбиниро- ванная в севообороте	Поверхностная	
Всходы – ветвление	2004	37,1	36,3	34,5	40,5	
	2005	53,7	43,8	47,2	47,4	
	2006	38,7	34,4	35	37	
	Среднее	43,2	38,2	38,9	41,6	
Ветвление – бутонизация	2004	65,5	63,6	72,6	98,7	
	2005	99,3	88,4	95,2	108,9	
	2006	74,3	68,9	73,6	89,4	
	Среднее	79,7	73,6	80,5	99	
Бутонизация – цветение	2004	81,5	69	84,7	75,1	
	2005	57,8	33,4	48,6	27,1	
	2006	63,3	41,1	64,5	46,7	
	Среднее	67,5	47,8	65,9	49,6	

В середине вегетации гороха (фенофаза ветвления — бутонизации) в повышении активности клубеньков, судя по их массе, во все годы исследований сильно возрастала роль поверхностного рыхления. В это время на его фоне накопление клубеньков в разные годы изменялось от 89.4 до 108.9 мг/раст.

При сильном увлажнении до последней стадии развития симбиотическо-

го аппарата гороха в период его бутонизации и цветения, характерном для всех лет исследований, положительное влияние на активность бобово-ризобиального симбиоза сохранялось только в вариантах со вспашкой. Плоскорезные, включая поверхностное, рыхления в таких случаях угнетали жизнедеятельность клубеньков, что прежде всего свидетельствует о резком ухудшении воздушного режима почвы. Так, превышение воздушно-сухой массы активных клубеньков в период бутонизации — цветения гороха по отвальной и комбинированной в севообороте системам обработки почвы в сравнении с другими составляло в разные годы от 6...15 до 13...31 мг/раст. Следует особо подчеркнуть, что во все годы более активный симбиотический аппарат до фенофазы ветвления формировался по поверхностной обработке почвы, которая затем утрачивала свое значение. Последнее, очевидно, связано с ухудшением распространения корневой системы вглубь почвы в процессе роста из-за значительного уплотнения слоев 10-20 и, особенно, 20-30 см.

В исследованиях установлено различное влияние основной обработки почвы на формирование урожайности гороха, изменение которой в целом соответствует динамике симбиотической активности (табл. 2). Почти во все годы проведения эксперимента более высокую продуктивность гороха обеспечивали варианты со вспашкой под культуру. В среднем за 2004 — 2006 гг. отвальная и комбинированная в севообороте системы обработки почвы со вспашкой под горох способствовали увеличению его урожайности на 0,17....0,32 т/га в сравнении с глубоким и поверхностным плоскорезными рыхлениями. При этом следует отметить особенно большое значение постоянной вспашки в севообороте для повышения урожайности гороха.

Таблица 2. Урожайность гороха в зависимости от систем обработки почвы, т/га

Система обработки почвы	2004 г.	2005 г.	2006 г.	Среднее
Отвальная (контроль)	0,91	1,53	1,7	1,38
Плоскорезная	1,0	1,34	0,9	1,08
Комбинированная в севообороте	1,09	1,56	1,1	1,25
Поверхностная	0,89	1,24	1,06	1,06
HCP ₀₅	0,2	0,09	0,31	-

Таким образом, в целях активизации бобово-ризобиального симбиоза и повышения урожайности гороха более предпочтительна вспашка непосредственно под культуру в условиях комбинированной и, особенно, отвальной систем обработки почвы в севообороте.