УДК 621-311

НАДЕЖНОСТЬ АСИНХРОННОГО ДВИГАТЕЛЯ И ЕЕ ОБЕСПЕЧЕНИЕ

Морозов А.Б., студент 5 курса института электротехнического инжиниринга

Научный руководитель – Ямалов И.И., кандидат технических наук, доцент

ФГБОУ ВО Уфимский университет науки и технологий

Ключевые слова: Надежность, асинхронный двигатель, обеспечение надежности

Работа посвящена обеспечению надежности асинхронного двигателя на разных этапах его жизненного цикла: проектировании, производстве, эксплуатации, обслуживанию в процессе эксплуатации. Приведены факторы и способы позволяющие поддерживать надежность на необходимом уровне.

Введение. Под надежностью электрической машины понимается способность безотказно работать и неизмененными техническими характеристиками в течение отведенного периода времени при определенных режимах, нормальных условиях эксплуатации, подобающем техническом обслуживании, хранении и транспортировании [1].

Цель работы. Определить факторы, влияющие на надежность асинхронных двигателей. Оценить способы позволяющие увеличить надежность или поддерживать ее на необходимом уровне. Сформировать перечень необходимых действий способных реализовать поставленные цели.

Результаты исследований. Условия эксплуатации имеют огромное влияние на надежность электротехнического оборудования. Различные удары, вибрации, резкие перепады температуры, перегрузки, влажность, песок, пыль и т.д. — все так или иначе влияет на работу и эксплуатацию устройств. Условия эксплуатации могут в различной

степени сказываться на сроке службы и надежности работы асинхронных двигателей.

Асинхронные двигатели обычно производителем рассчитываются на срок службы до 20 лет без капитального ремонта, при условии их нормальной эксплуатации, расписанной в паспорте устройства.

Однако в реальности имеет место значительное отступление от номинальных режимов эксплуатации. Первостепенно это плохое качество питающего напряжения, а также нарушение правил технической эксплуатации: условия окружающей среды (повышенные влажность, температура и ее резкие перепады), технологические перегрузки (они могут сопровождаться резким повышением вибраций, что ведет к понижению надежности), снижение сопротивления изоляции, нарушение охлаждения. Последствием всех этих отклонений являются аварийные режимы работы асинхронного двигателя [2].

В конечном итоге из-за аварий ежегодно выходят из строя около 10% эксплуатируемых электрических двигателей. Выход из строя двигателя приводит к довольно тяжелым авариям и немалому материальному ущербу, связанному с устранением последствий аварий, очень дорогим ремонтом и простоем технологических процессов, потому что из-за вышедшего из строя электродвигателя перестанет работать весь механизм.

Эксплуатационная среда. Вибрационно-ударные нагрузки значительно понижают надежность электрических двигателей. Воздействие вибрационно-ударных нагрузок на двигатель может быть зачастую значительнее воздействия других механических, электрических и тепловых нагрузок. В результате длительного знакопеременного воздействия даже самых небольших вибрационно-ударных нагрузок происходит накопление износа и усталости в элементах – это нередко приводит к внезапным отказам, к чему надо быть всегда готовым [3].

При циклических режимах работы электродвигателя появляются нагрузки, связанные с частыми включениями и выключениями, так же как и вибрационно- ударные нагрузки, значительно сильно влияют на возникновение и развитие признаком износа и усталости элементов.

Значительное влияние оказывает повышенная температура на работу механических элементов электродвигателя. Также из-за попадания влаги вовнутрь устройства происходит очень быстрая коррозия металлических деталей, сильно понижается поверхностное и объемное сопротивление изоляционных материалов, от которых зависит корректная работа обмоток, появляются различные утечки, резко увеличивается опасность поверхностных пробоев, появляется грибковая плесень, из-за которой поверхность материалов разъедается и электрические свойства электродвигателя становятся хуже.

Пыль наиболее опасна для электрических двигателей, так как в них она попадает с воздухом, поступающим через вентиляцию для охлаждения. Однако и в других элементах электротехнических устройств износ сильно ускоряется, если у пыли получается проникнуть сквозь уплотнения к поверхности трения.

Применение профилактических мероприятий (осмотры, периодические испытания и регламентные работы), ремонта и обслуживания, использования опыта эксплуатации электрических двигателей обеспечивают их наиболее высокую эксплуатационную надежность.

Заключение. Для обеспечения надежности асинхронного электродвигателя необходимо:

- При проектирования учитывать условия в которых будет эксплуатироваться электротехническое устройство (повышенная температура, пыль, влага, вибрации и удары и т.д.);
- Вовремя изготовления двигателя использовать качественные и одновременно дешевые материалы, что особенно сильно влияет на качество изоляции обмотки;
- Иметь квалифицированный персонал с необходимыми умениями для производства или эксплуатации;
- Проводить профилактическое техническое обслуживание и при необходимости ремонт.

Библиографический список:

1. Эксплуатационная надежность асинхронных двигателей [Электронный ресурс]. – Режим доступа:

https://remontfirm.ru/results/operational-reliability-of-motors/, свободный. - (дата обращения: 24.01.2024).

- 2. Надежность асинхронных двигателей [Электронный ресурс]. Режим доступа: https://panor.ru/articles/nadezhnost-asinkhronnykhdvigateley/15715.html#, свободный. (дата обращения: 24.01.2024).
- 3. Романова В.В., Хромов С.В., Суслов К.В. Анализ воздействующих факторов, влияющих на эксплуатационную надёжность низковольтных асинхронных электродвигателей // Известия высших учебных заведений. ПРОБЛЕМЫЭНЕРГЕТИКИ. 2021. Т. 23. № 3. С. 80-89. doi:10.30724/1998-9903-2021-23-3-80-89.

ASYNCHRONOUS MOTOR RELIABILITY AND ITS PROVISION

Morozov A.B. Scientific supervisor – Yamalov I.I. Ufa State University of Science and Technology

Keywords: Reliability, asynchronous motor, reliability assurance
The work is devoted to ensuring the reliability of an asynchronous
motor at different stages of its life cycle: design, production, operation,
maintenance during operation. The factors and methods allowing to maintain
reliability at the required level are given.