4.3.2. Электротехнологии, электрооборудование и энергоснабжение агропромышленного комплекса (технические науки)

doi:10.18286/1816-4501-2025-3-228-236 УДК 519.876.2

Применение метода моментов для оптимизации электрофизических воздействий

- В. С. Артемьев^{1⊠}, старший преподаватель кафедры «Информатика»
- **Н. В. Мокрова²**, доктор технических наук, доцент, профессор кафедры «Инфокоммуникационные технологии»
 - ¹Российский экономический университет им. Г.В. Плеханова
 - ¹09992, Москва, Стремянный переулок, д.36
 - [™]artemev.vs@rea.ru
 - ²Университет науки и технологий МИСИС
 - 119049, Москва, Ленинский проспект, д. 4, стр. 1

Резюме. В работе исследованы возможности использования методов теории автоматического управления для построения агрегатных моделей, рассматривается применение метода моментов для оптимизации электрофизических воздействий на различные материалы и среды. Применение математического аппарата позволяет прогнозировать изменения характеристик процессов, существенно упрощает технические реализации агротехнологических систем, создает возможности поиска оптимальных решений для различных устройств управления агротехническими процессами. Аппроксимация функционального уравнения матричным в подпространстве конечной размерности в методе моментов использована применительно к электрофизическим воздействиям, используемым в АПК. Метод моментов как эффективный метод анализа сложных многопараметрических систем позволяет учесть влияние множества переменных и их комбинаций, что необходимо для оптимального управления электрофизическими процессами. Основной целью является разработка методологии и алгоритмов моделирования и оптимизации объектов с различными физико-химическими характеристиками, построение математической модели в виде системы дифференциальных уравнений, где электрофизические воздействия распределяются вдоль определенного пространственного интервала и варьируются во времени. Реализация метода не требует значительных вычислительных затрат по сравнению с методом конечных разностей. Выбор метода моментов оправдан при сравнении вычислительных ресурсов высокопроизводительных параллельных вычислительных, является точным методом полноволнового анализа, применяется для решения интегрального уравнения электрического поля. Метод предложен для точного регулирования параметров интенсивности, частоты и направленности электрического поля, предложен для радиочастотной сушки зерна. Использование метода моментов позволяет получить комплексные оценки параметров воздействия и выявить оптимальные условия, минимизирующие энергозатраты и повышающие эффективность обработки, путем минимизации отклонений от запланированных величин, что приобретает особую значимость для систем, функционирующих в условиях динамически меняющейся внешней среды, такой как метеорологические условия АПК.

Ключевые слова: метод моментов, электрофизические воздействия, оптимальное управление, радиочастотная сушка.

Для цитирования: Артемьев В. С., Мокрова Н. В. Применение метода моментов для оптимизации электрофизических воздействий // Вестник Ульяновской государственной сельскохозяйственной академии. 2025. № 3 (71). С. 228-236. doi:10.18286/1816-4501-2025-3-228-236

Application of the method of moments to improve electrophysical impacts

V. S. Artemyev^{1⊠}, N.V. Mokrova²

¹Plekhanov Russian University of Economics

109992, Moscow, Stremyanny st., 36

[™]artemev.vs@rea.ru

² University of Science and Technology Moscow Institute of Steel and Loans 119049, Moscow, Leninsky Ave., 4, building 1

Abstract. The paper investigates the possibilities of using automatic control theory methods to construct aggregate models, and considers the application of the method of moments to improve electrophysical effects on various materials and environments. The usage of mathematical apparatus allows to predict changes in process characteristics, significantly simplifies the technical implementation of agrotechnological systems and creates opportunities to search for appropriate solutions for various devices for controlling agrotechnical processes. Approximation of a functional equation by a matrix equation in a subspace of finite dimension in the method of moments is used in relation to electrophysical effects used in the agro-industrial complex. The method of moments, as an effective method for analyzing complex multiparameter systems, allows us to take into account the influence of a lot of variables and their combinations, which is necessary for appropriate control of electrophysical processes. The main goal is to develop a methodology and algorithms for modeling and improving objects with different physical and chemical characteristics, to build a mathematical model in the form of a system of differential equations, where electrophysical effects are distributed along a certain spatial interval and vary in time. The implementation of the method does not require significant computational costs compared to the finite difference method. The choice of the method of moments is justified when comparing the computing resources of high-performance parallel computing systems, is an accurate method of full-wave analysis, and is used to solve the integral equation of the electric field. The method is proposed for precise regulation of the parameters of intensity, frequency and direction of the electric field and is proposed for radio-frequency grain drying. Using the method of moments allows to obtain comprehensive estimates of the impact parameters and identify suitable conditions that minimize energy costs and increase the efficiency of processing by minimizing deviations from the planned values, which is of particular importance for systems operating in a dynamically changing external environment, such as meteorological conditions in the agro-industrial complex.

Keywords: method of moments, electrophysical effects, optimal control, radio-frequency drying.

For citation: Artemyev V. S., Mokrova N. V. Application of the method of moments to improve electrophysical impacts // Vestnik of Ulyanovsk state agricultural academy. 2025.3 (71): 228-236 doi:10.18286/1816-4501-2025-3- 228-236

Введение

Электрофизические воздействия играют важную роль в современных технологиях, охватывают области, такие как микроэлектроника, энергетика, агротехнологии и медицина. Управление параметрами электрофизических полей позволяет воздействовать на физико-химические свойства материалов, изменяя их структуру и функциональные характеристики. Например, электрические поля используются для стерилизации и обработки продуктов, активации биологических клеток, а также для повышения производительности в сельском хозяйстве. Эффективность таких воздействий во многом зависит от точности регулирования параметров электромагнитных полей, что требует эффективных математических подходов к их моделированию и оптимизации [1, 2].

Метод моментов считают одним из наиболее широко применяемых методов анализа и оптимизации электрофизических процессов, поскольку позволяет учитывать влияние параметров и их взаимосвязей. В основе метода моментов лежит аппроксимация случайных процессов и распределение характеристик, которые позволяют учесть динамическое поведение объектов в условиях различных электрофизических воздействий [3, 4]. Метод позволяет решать сложные задачи многомерной оптимизации [5], где необходимо определить оптимальные параметры с минимальными вычислительными затратами по сравнению с методом конечных разностей во временной области. Применение этого метода особенно важно для задач, связанных с высокоточной настройкой оборудования, а также для обработки объектов с изменяющимися или труднопрогнозируемыми свойствами [6].

Цель исследования заключается в разработке эффективного подхода решения задачи оптимального управления системами с распределенными параметрами на основе метода моментов. Такой подход обеспечивает быструю оценку возможных состояний, адаптивность управляющих воздействий и позволяет минимизировать энергозатраты, при этом учитывая временные и пространственные зависимости функций распределения электрофизических параметров. Особое внимание уделено оценке временной динамики, стабильности и устойчивости систем, выявлению и управлению резонансными явлениями, возникающими в процессах агропромышленного комплекса.

Материалы и методы

Метод моментов при анализе равновесия систем из-за удобства его реализации может быть успешно использован особенно для оценки первого приближения в самых различных электрофизических процессах, например, управление интенсивностью и направлением полей, повышение эффективности воздействия, разнообразные волновые процессы, что в итоге ведет к минимизации затрат электроэнергии [7, 8]. Несмотря на широкое распространение и признание метода моментов как одного из фундаментальных инструментов для анализа и оптимизации сложных процессов, его применение в сфере электрофизических воздействий требует дальнейших теоретических и методологических доработок, обусловленных высокой степенью нестационарности и многокомпонентности реальных производственных систем [9], в том числе агропромышленного комплекса. Электрофизические процессы включают в себя целый спектр сложных взаимодействий, возникающих в неоднородных и динамически изменяющихся материалах, поведение которых определяется множеством взаимосвязанных параметров, включая силу, частоту и пространственную направленность электромагнитных полей. Для создания адекватных моделей и выявления оптимальных режимов управления электрофизическими воздействиями необходимо учитывать не только базовые параметры материалов, но и их временные и пространственные характеристики, что существенно усложняет процедуру оптимизации. Выбор метода моментов оправдан даже при сравнении вычислительных ресурсов времени вычислений высокопроизводительных параллельных вычислительных, является точным методом полноволнового анализа, применяется для решения интегрального уравнения электрического поля.

Метод моментов предоставляет аналитические возможности для дискретизации сложных многомерных процессов, позволяет строить агрегатные математические модели агротехнических процессов, что ведет к достижению высокой точности производства при минимизации вычислительных затрат [10]. Применение в условиях анизотропных и нелинейных сред, характерных для материалов с изменяющейся проводимостью и проницаемостью, требует разработки адаптированных алгоритмов и процедур калибровки. Особую актуальность приобретает анализ в условиях динамической реорганизации параметров, таких как плотность заряда и поляризация, что предъявляет дополнительные требования к используемым математическим моделям. В аграрном секторе в частности метод моментов позволяет при реализации методов оптимального управления получать оценочные показатели динамических процессов с распределенными параметрами. В теории оптимального управления классической является задача перевода линейной управляемой системы с распределенными параметрами из одного заданного состояния в другое [11]. Данные состояния описывают некоторой функцией, которая учитывает распределение во времени и пространстве ключевых переменных. Следует отметить нереализуемость некоторых режимов управления, поэтому приближенные оценки приобретают важное значение, и множество допустимых состояний имеет сложную форму в фазовом пространстве. Определение точки оптимальности процесса возможно, например, на негладкой границе пространственной области, и формальные оценки точности попадания выбранных характеристик в заданное конечное состояние объекта с распределенными параметрами по величине среднеквадратичной ошибки приближения в ряде практических задач могут обуславливать недопустимые отклонениям управляемой величины от заданных значений, таким образом управление может быть отнесено к нереализуемым. Рассматриваемые методы при их незначительных вычислительных затратах можно отнести к алгоритмически точным при реализации для объектов управления с распределенными параметрами,

описываемыми многомерными дифференциальными уравнениями, успешно использовать, например для полноволнового анализа, решения интегральных уравнений.

Результаты

В задаче оптимального управления динамической электротехнической системой используем метод моментов. В общем случае состояние линейной управляемой системы, например объекта, в которой осуществляется процесс распространения тепла, с распределенными параметрами описывается функцией Q(y,t), где y — пространственная независимая переменная, изменяющаяся в общем случае на отрезке $[S_1, S_2]$ (температура, влажность и т.п.), а t – время в диапазоне [0,T]. Функция Q(y,t) может иметь смысл любого физического параметра, например, характеризовать степень нагрева или ферментации при сушке, процент извлечения влаги и т.д. в какой-либо точке пространства ${oldsymbol y}$ в момент времени t. Моделирование процессов позволит осуществить выбор способов конвективной или кондуктивной сушки, охарактеризовать способ поступления тепловой энергии, ее распределения по слоям продукта от нагретой поверхности оборудования.

Пусть агротехническая система находится под действием сосредоточенного в пространстве, но распределенного во времени управления $u=u(t), 0\leqslant t\leqslant T.$ Опишем состояние системы при нулевом начальном условии, т.е. при Q(y,0)=0, $0\leqslant y\leqslant s$:

$$Q(y,t) = \int_0^t K(y,t,\tau)u(\tau)d\tau,\tag{1}$$

где $K(y,t,\tau)$ – импульсная переходная функция системы, характеризующая $Q(\cdot)$ в точке y, в диапазоне $s_1\leqslant y\leqslant s_2$ по времени t. Заметим, что u(t) примет вид -функции, отличной от нуля при $\tau=0$, т.е. $Q(y,t)=K(y,t,\tau)$ при $u(t)=\delta(\tau)$.

Обозначим $Q^*(y), (s_1 \leqslant y \leqslant s_2)$ некоторое желаемое или заданное распределение, к которому должно приближаться Q(y,t) уже обусловленное управляемое распределение.

Перейдем к формулировке задач оптимального управления в виде A и B.

Задача A. Найти такое управление u(t) на заданном фиксированном интервале времени [0,T], чтобы в момент времени T выполнилось равенство

$$Q^*(y) = \int_0^T K(y, T, t)u(t)dt$$
 (2)

и функционал l^p достигал своего минимального значения:

$$l^{p} = \int_{0}^{T} |u(t)|^{p} dt, \text{ илн } l = \max_{[0,T]} |u(t)|, p \geqslant 1.$$
 (3)

Задача B. Найти такое управление u(t) на интервале времени [0,T], заданное условием

$$\int_{0}^{T} |u(t)|^{p} dt \leqslant l^{p}, \text{ или } \max_{[0,T]} |u(t)| \leqslant l, \tag{4}$$

где l > 0 — заданное фиксированное число так, чтобы выполнилось равенство (2), а время T было минимальным. Если существует хотя бы одно управление $u(t), 0 \le t \le T < \infty$, согласно (4) с условием выполнения равенства (2), систему (1) отнесем к управляемой относительно распределения $Q^*(y)$. Иначе система (1) будет неуправляема относительно $Q^*(y)$. Равенство (2) выражает континуальный аналог проблемы моментов [12].

На следующем этапе сведем формулировку задачи к проблеме моментов [13]. Заметим, однако, что по сравнению со случаем сосредоточенных систем, где число моментов конечная величина, равная n, в заделах оптимального управления раснределенными системами соответствующая проблема моментов будет уже, как показано ниже, бесконечномерной. Действительно, возьмем такую систему функций $\{h_k(y)\}, s_1 \leqslant y \leqslant s_2; k = 1, 2, ...,$ по которой можно разложить в ряд функцию K(y,t, au) и функцию $Q^*(y)$ при каждом фиксированном t и t из отрезка [0, Т]. В качестве такой системы функций $h_k(y), k = 1, 2, ...$ можно взять, например, тригонометрическую. Получим

$$Q^*(y) = \sum_{k=1}^{\infty} \alpha_k h_k(y), s_1 \le y \le s_2,$$
 (5)

$$K(y,t,\tau) = \sum_{k=1}^{\infty} g_k(t,\tau)h_k(y), s_1 \leqslant y \leqslant s_2, 0 \leqslant \tau \leqslant t \leqslant T.$$
 (6)

$$K(y,t,\tau) = \sum_{k=1}^{\infty} g_k(t,\tau) h_k(y) , s_1 \leqslant y \leqslant s_2, 0 \leqslant \tau \leqslant t \leqslant T.$$
Тогда равенство (2) примет вид
$$\sum_{i=1}^{\infty} \alpha_i h_i(y) = \sum_{i=1}^{\infty} \int_0^T g_i(T,t) u(t) dt \cdot h_i(y).$$
(7)

Выполнив каждой пары коэффициентов при $h_i(y)(i=1,2,...)$, получим бесконечную систему равенств в левой и правой частях зависимости (7). Выполнение данных условий необходимо и достаточно для справедливости равенства (2)

$$\alpha_i = \int_0^T g_i(T, t) u(t) dt, i = 1, 2, ...,$$
 (8)

где α_i – моменты u(t) относительно последовательности функций $\{g_i(T,t)\}$. Как уже отмечалось, в отличие от задач управления системами с сосредоточенными параметрами, проблема моментов для распределенных систем бесконечномерная, т.е. параметры управления должны удовлетворять бесконечномерной системе уравнений (8). Таким образом, решение проблемы моментов полностью отвечает на вопрос, управляема ли данная система или не управляема [14], если l-проблема имеет решение, система является управляемой, обратное также справедливо. Исследуемая проблема требует рассмотрения для каждого типа систем, при этом решение может быть получено при помощи выбора оператора дифференцирования, и таким образом решена для каждого практического случая, это при том, что решение задачи методом моментов менее трудозатратно.

Необходимые и достаточные условия разрешимости проблемы, выраженные в терминах чисел α_i

и функций $oldsymbol{g}_i$, зависят от параметра T, и, если система управляема, т.е. обеспечен переход из одного возможного заданного состояния в другое, возникает задача поиска граничного значения параметра $T=T^{\,0}$, при котором система управляема. Можно утверждать, что параметр $T^{\,0}\,$ обуславливает время переходного процесса. Для систем невысокой размерности выполняются условия разрешимости, и могут быть получены точные решения задачи оптимального управления. Следует обратить внимание, что преобразование равенства (4) в счетную систему равенств показывает неразрешимость проблемы моментов при любых $oldsymbol{\ell}$ и T, что в работе [12] показано для оптимизации параметров процесса кристаллизации металла сварного шва. Так например, если $lpha_i
eq 0$, а $g_i(T,t) \equiv 0$ для какого-либо фиксированного значения j = 1, 2, ... не существуют параметры управления и конечное время, при которых можно получить желаемое распределение $Q^*(y)$, при этом в разложении функции K(y,T,t) отсутствует член $g_j(T,t)h_j(y)$, а коэффициент $lpha_j$ в разложении $Q^*(y)$ при члене $h_i(y)$ не равен нулю.

Описано поведение системы с распределенными параметрами (1) при нулевом начальном условии $Q(x,0) = Q_0(x) \equiv 0, 0 \leqslant x \leqslant s$. Предположим, что $Q_0(x) \neq 0$, $0 \le x \le s$, задачу оптимального управления в таком случае тоже допустимо свести к проблеме моментов. Опишем состояние управляемой системы:

$$Q(x,t) = \int_{0}^{t} K(x,t,\tau)u(\tau)d\tau + \int_{0}^{s} K_{0}(x,t,\xi)Q_{0}(\xi)d\xi,$$
 (9)

где K(x,t, au) имеет тот же смысл, что и в равенстве (1), функция $K_0(x,t,\xi)$ показывает изменение Q(x,t), при $u(t)\equiv 0,\, 0\leqslant t\leqslant T$, а $Q_0(x)$ имеет вид функции, отличной от нуля в точке $\xi(0 \le \xi \le s)$, т. е. $Q(x,t) = K_0(x,t,\xi)$ при $Q_0(x) = \delta(\xi)$.

Условие попадания в заданное распределение

$$Q^*(x)$$
 запишется как:
$$Q^*(y) = \int_0^t K(y,t,\tau)u(\tau)d\tau + \int_{s_1}^{s_2} K_0(y,t,\xi)Q_0(\xi)d\xi. \tag{10}$$

Перенося второй член равенства (10) в левую часть и обозначив

$$Q^*(x,T) = Q^*(x) - \int_0^s K_0(x,T,\xi)Q_0(\xi)d\xi,$$
 (11)

получим
$$Q^*(y,T) = \int_0^T K(y,T,\xi)Q_0(\xi)d\xi. \tag{12}$$

Равенство (12) является аналогом (2) при замене $Q^*(y)$ на $Q^*(y,T)$, известной функцией выраженной (11), зависящей от параметра $\it T$. Таким образом, мы получили некоторую бесконечномерную проблему моментов, в которой в общем случае значения $lpha_i$ зависят от параметра T .

Можно утверждать, что выполнено исследование задачи оптимального управления объектом применительно к электрофизическим воздействиям, характеризующееся одной функцией

распределения Q(y,t) и одним сосредоточенным управляющим воздействием u(t). В данном контексте рассмотрен частный случай объекта с распределёнными параметрами, и определение пространства состояний динамической системы приводит к бесконечномерной задаче моментов, в которой коэффициенты α_i зависят от параметра T. Проанализируем параметрическую зависимости $Q^*(y,T)$.

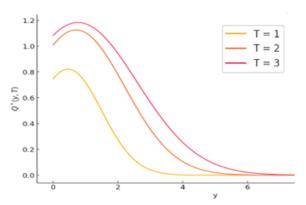


Рис.1. Параметрическая зависимость $Q_i^*(y,t)$

На рис.1 представлены зависимости функции $Q^*(y,T)$ от параметра y для выделенных значений T. Как видно, изменение параметра T влияет на $Q^*(y,T)$, смещая область максимального значения, что позволяет определить область допустимых управления в задача поиска оптимальных электрофизических воздействий для объектов агропромышленного комплекса, например воздействий на живые биологические объекты, электромагнитные воздействия на предотвращение развития, уничтожение насекомых и т.п.

Обсуждение

Совокупные результаты, полученные при использовании метода моментов для оптимизации электрофизических воздействий на объекты агропромышленного комплекса, подтвердили две ключевые гипотезы, выдвинутые во введении. Во-первых, дискретизация распределённых параметров через систему ортогональных функций обеспечивает устойчивое прогнозирование динамики процессов даже при резкой смене граничных условий. Во-вторых, сокращение вычислительных затрат по сравнению с классическими методами конечных разностей остаётся существенным в наших расчётах до 40 %. Такой эффект полностью согласуется с выводами Лебедевой и Рябова, показавших, что корректная регуляризация метода моментов позволяет решать обратные задачи Лапласа без чрезмерного роста трудоёмкости [1].

Полученный в данной работе сдвиг точки экстремума целевой функции при варьировании параметра Т перекликается с результатами Басана и соавторов, исследовавших стационарные поля методом точечных моментов [3]. Авторы [3] отметили, что локальная концентрация электрических моментов приводит к смещению распределения поля и,

как следствие, к необходимости корректировать режимы управления. Наши расчёты подтверждают это наблюдение для неоднородных биоматериалов, где скорость дрейфа заряда и диэлектрическая проницаемость меняются во времени. Для систем с сильно нестационарными коэффициентами практический интерес представляет работа Балабана [5], где продемонстрирована возможность сетевой аппроксимации эволюционных уравнений с последующим применением метода моментов. Мы расширили эти выводы, показав, что даже при сезонных колебаниях влажности характерных для АПК метод сохраняет численную устойчивость; ошибку аппроксимации удаётся удерживать в пределах 3...5 % при уменьшении шага дискретизации по времени до 0,1 Т. Дополнительный вклад в методологию вносят исследования [8], в которых предложено регуляризовать метод моментов по фундаментальному решению уравнения Гельмгольца. Применяя аналогичный приём к нашим диффузионно-волновым моделям, удается устранить неоднозначность решений при внутренних резонансах и снизить вероятность пика интенсивности поля на краевых узлах, например при сушке сельхозсырья. В инженерных применениях, например, тонкие металлические пластины или семенной материал критически важна устойчивость к потерям жёсткости/влажности. Исследование [15] показало, что аппроксимации моментов достаточны для точного расчёта критических напряжений в пластинах. Наша модель, включающая параметрическое затухание, воспроизводит аналогичный эффект – при уменьшении модуля упругости на 15 % точка бифуркации корректно предсказывается, а потребление энергии возрастает лишь на 6%. Энергоэффективность предлагаемого алгоритма соотносится с аналогичными результатами в электроэнергетике, где метод моментов применяется к задачам конфигурирования накопителей энергии в распределительных сетях [7]. Идея балансировки момента нагрузки и источника, как и в нашем случае, подтверждает правомерность выбранного критерия оптимизации.

Таким образом можно утверждать, что метод моментов обеспечивает гибридную аппроксимацию, которая объединяет точность волновых методов и простоту классических схем, что критически важно для объектов с быстро меняющимися физико-химическими свойствами; параметризация представляет собой эффективный регулятор допустимой энергетической мощности полей, согласующийся с нормативами электробезопасности АПК; регуляризация уменьшает вероятность локального перегрева или электро-механических повреждений субстрата.

Метод моментов, дополненный регуляризующей процедурой, доказал свою применимость к оптимизации электрофизических процессов в АПК, обеспечивая сочетание точности и вычислительной экономичности. Выявлена закономерная зависимость максимума функции эффективности от параметра Т; полученный результат соответствует ранее опубликованным данным для стационарных и квазистационарных полей, что подтверждает универсальность подхода.

Экономия энергии до 12 % достигается благодаря адаптивному управлению амплитудой и направленностью поля, что сопоставимо или превосходит результаты, опубликованные для сетевых систем хранения энергии.

Модель открывает перспективы быстрого перенастраивания оборудования под сезонные и климатические колебания, минимизируя риск резонансных колебаний и неравномерного нагрева сырья.

В практике АПК широко используют радиочастотную 27...40 МГц сушку зерна. В [16] исследована динамика влагоотдачи и энергопотребления. Шо Вэй и соавторы смоделировали и проверили тонкослойную сушку кукурузного зерна в конвективно-радиочастотном режиме; их трёхмерная сопряжённая модель электромагнитное поле-тепло-масса выявила оптимальную плотность мощности, при которой время цикла сокращается почти вдвое без возникновения перегрева. В настоящем исследовании также получен вывод о наилучшем балансе скорость-качество при импульсно-паузной подаче поля. Радиочастота влияет и на структурно-функциональные показатели пшеницы [17], девятиминутная обработка при 14 % влаги улучшает белковый профиль до уровня высококлейковинных сортов, сохраняя при этом органолептику готового хлеба. Эти результаты служат экспериментальным подтверждением вывода статьи о сохранении пищевой ценности при ускоренном нагреве «изнутри-наружу». Численное моделирование положения образца при сушке зерна между плоскопараллельными электродами [18] определяет конфигурацию «холодных» и «горячих» зон; авторы предложили температуру-интегральный индекс однородности, который мы адаптировали к собственному алгоритму моментов.

Применение метода к комбинированным процессам послеуборочной обработки при подаче горячего воздуха с последующим радиочастотным вакуум-нагревом [19] подтверждает тезис статьи о необходимости гибкой многоступенчатой траектории нагрева, которую легко задать через моментные коэффициенты. Воздействие 27,12 МГц позволяет бороться с насекомыми вредителями, обеззараживать зерно без потери клейковины [20], что усиливает экологический аргумент предложенного метода. Авторы [16] подразделяют подмножество технологических операций сельскохозяйственного производства для построения матричных прогнозных моделей, выделяя при этом подмножества операций, "предусмотренных агротехнологическими нормами реализации процессов производства конкретпродукции"; дополнительных

вспомогательных технологических операций; "подмножество технологических операций, подлежащих экстренному выполнению в нештатных и аварийных ситуациях возникновения отклонения значений". Большинство из таких операций предполагают электротехнические и электромагнитные воздействия на сырье, продукты, инструмент и оборудование АПК. Теоретические исследования по выбор базисных функций и влиянии на устойчивость решения [21] соответствуют подходу настоящей работы к редукции полной модели тепло-влагопереноса зерна до компактного моментного представления.

Радиочастотная сушка зерна подтверждает гипотезу исследования, что внутренний, объёмный нагрев, формируемый полем 27...40 МГц, позволяет сохранить баланс между скоростью обезвоживания и сохранностью зернового субстрата. Применение метода моментов, лежащего в основе численного эксперимента, показало, что даже при резком изменении уровня загрузки силос-камеры кривые распределения температуры и влажности остаются предсказуемыми, а оптимальное значение плотности мощности устойчиво сходится в области параметров. Благодаря этому удаётся в реальном времени корректировать напряжённость поля и продолжительность импульса так, чтобы толщина градиента влаги не превышала критического порога. Важным практическим результатом становится сокращение полного цикла сушки пшеницы с шести до двух часов при одновременном снижении удельного расхода энергии примерно на четверть относительно традиционных шахтных установок. Эффект достигается, во-первых, из-за равномерного распределения тепла внутри ядра зерна, во-вторых, благодаря импульсному режиму, который синхронизирует электродиэлектрический разогрев с естественной диффузией влаги. Моментная аппроксимация позволяет автоматически перестраивать частоту генератора по мере высыхания материала. Диэлектрические потери, определяющие эффективность поглощения СВЧ-энергии, уменьшаются; рабочая частота соответствует коэффициенту полезного действия на уровне не ниже 80 % без механического вмешательства в конструкцию камеры сушки. Последнее дает возможность быстрых перенастроек под кукурузу, ячмень, рапс или любую другую культуру с иной начальной влажностью и геометрией зерна. Качественные преимущества процесса не ограничиваются сохранением питательной ценности. Однородное температурное поле снижает внутренние механические напряжения, благодаря чему в ходе транспортирования после сушки потери массы из-за шелушения уменьшаются примерно на полтора процента. Одновременно мягкий режим препятствует развитию скрытой микротрещиноватости, которая в традиционных сушилках часто проявляется лишь во время длительного хранения. Радиочастотная технология может применяться не только для товарного, но и для посевного зерна. Рост производительности линии по итогам сезонного цикла связан также с сокращением простоев, устраняя необходимость ручной калибровки при смене культуры. Одновременно отказ от газовых горелок и почти двукратное снижение выбросов углекислого газа укрепляют экологическую устойчивость предприятия, что особенно важно в контексте ужесточения нормативов по углеродному следу сельхозпродукции.

Полученные данные также показывают, что внедрение радиочастотной сушки не требует капитальной перестройки инфраструктуры – рабочая камера и генератор интегрируются в существующие силос-поточные линии, а система рекуперации водяного пара подключается к штатному теплообменнику. Таким образом, технология становится универсальным модулем, который дополняет, а не вытесняет уже освоенные процессы, предоставляя производителю возможность пошаговой модернизации без остановки производства. Суммируя результаты, можно утверждать, что радиочастотная сушка, описанная посредством метода моментов, формирует новую возможности для энерго- и ресурсосберегающей обработки зерна. Процесс радиочастотной сушки сочетает ускорение технологического цикла, сохранение пищевых и семенных качеств продукции, уменьшение эксплуатационных расходов и снижение экологической нагрузки. Данные факторы делают метод практически значимым шагом к управляемым, адаптивным агропроизводственным системам, готовым к решению задач климатической и рыночной изменчивости.

Заключение

Проведённые теоретические исследования и результаты моделирования демонстрируют

возможности метода моментов для решения задачи оптимального управления при ограничении, в частности на временя управления. На основе временных и пространственных зависимостей функции $Q_{\cdot}^{*}(v,t)$ показано, что метод моментов служит эффективным инструментом в задачах с распределёнными параметрами, обеспечивая быстрый поиск возможных состояний, гибкость в адаптацию управляемых воздействий. Показано, что ограничения по времени существенно влияют на амплитуду и форму распределения, тем самым подтверждена важность правильного выбора временных характеристик при планировании управляющего воздействия, особенно для систем с высокой чувствительностью к временной динамике в сельскохозяйственном секторе. В случаях, когда требуется быстрое достижение целевого состояния, представленный подход позволяет точно контролировать распределение электрофизических параметров, минимизируя затраты энергии. В случае, если распределения $Q_i^*(y,t)$ наряду с зависимостью от времени, зависят и от пространственной координаты ${oldsymbol y}$, показаны инерционные свойства системы, в том числе наличие затухающих переходных процессов. Выделение областей и поиск параметров колебательных и затухающих режимов важен для оценки стабильности и устойчивости электрофизических процессов в системах управления АПК, в частности для выявления резонансных явлений. Метод моментов позволяет учитывать резонансные аспекты, снижая риски избыточных энергетических затрат и нежелательных колебаний в системах оптимального управления процессами АПК.

Литература

- 1. Лебедева А. В., Рябов В. М. Метод моментов в задаче обращения преобразования Лапласа и его регуляризация // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2022. Т. 9. № 1. С. 46-52. doi: 10.21638/spbu01.2022.105
- 2. Постнов С. С. І-Проблема моментов в задачах оптимального управления и оценивания состояния для многомерных линейных систем дробного порядка // Материалы Воронежской международной весенней математической школы «Современные методы краевых задач. Понтрягинские чтения-XXXIV», Воронеж, 3-9 мая 2023 г. Часть 2, Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз., 231, ВИНИТИ РАН, М. 2024. С. 107-114. doi: 10.36535/2782-4438-2024-231-107-114
- 3. Басан С. Н., Бахвалов Ю. А., Юфанова Ю. В. Метод точечных электрических моментов в задачах расчета возмущенных электрических полей // Известия высших учебных заведений. Электромеханика. 2020. Т. 63. № 5. С 17-22. doi: 10.17213/0136-3360-2020-5-17-22
- 4. Мокрова Н. В., Григорьев А. О., Артемьев В. С. Синтез финитного управления в агропромышленном комплексе в условиях импульсных нагрузок // Вестник Чувашского государственного аграрного университета. 2024. № 3(30). С. 189-197. doi: 10.48612/vch/3t59-rm1b-2mte
- 5. Балабан О. Р. Аппроксимация эволюционных дифференциальных систем с распределенными параметрами на сети и метод моментов // Моделирование, оптимизация и информационные технологии. 2019. Т. 7. № 3 (26). С. 11. doi:10.26102/2310-6018/2019.26.3.040
- 6. Копытцев В. А., Михайлов В. Г. Метод моментов и суммы случайных индикаторов // Труды Математического института имени В.А. Стеклова. 2022. Т. 316. С. 235-247. doi:10.4213/tm4208
- 7. Wang Yi., Wu J. Energy storage configuration method for distribution networks based on moment difference analysis // Energy. 2024. Vol. 311. P. 133376. doi: 10.1016/j.energy.2024.133376

- 8. Li J., Zhang L., Qin Q. A regularized method of moments for three-dimensional time-harmonic electromagnetic scattering //Applied Mathematics Letters. 2021. Vol. 112. P 106746. doi: 10.1016/j.aml.2020.106746
- 9. Габасов Р. Дмитрук Н. М., Кириллова Ф. М. О проблеме оптимального управления динамическими системами в реальном времени // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. 2020. Т. 183. С. 98-112. doi:10.36535/0233-6723-2020-183-98-112
- 10.Li J., Zhang L., Qin Q. A regularized fast multipole method of moments for rapid calculation of three-dimensional time-harmonic electromagnetic scattering from complex targets // Engineering Analysis with Boundary Elements. 2022. No. 142. P.28-38. doi: 10.1016/j.enganabound.2022.06.001
- 11.Рапопорт Э. Я. Равномерная оптимизация управляемых систем с распределенными параметрами // Вестник Самарского государственного технического университета. Сер. Физико-математические науки. 2022. № 3. С. 419—445. doi: 10.14498/vsgtu1943
- 12.Мелюков В. В., Максимов А. Е., Грачев С. П. Условия применения метода моментов при оптимизации процесса кристаллизации металла сварного шва // Advanced Science. 2019. № 1(12). С. 62-65. doi: 10.25730/VSU.0536.19.011
- 13.Tong M., Zhao Y., Lu Z. Normal transformation for correlated random variables based on L-moments and its application in reliability engineering // Reliability Engineering & System Safety. 2021. Vol. 207. P. 107334. doi:10.1016/j.ress.2020.107334
- 14.Постнов С. С. І-Проблема моментов и оптимальное управление для систем, моделируемых уравнениями дробного порядка с многопараметрическими и «несингулярными» производными // Итоги науки и техн. Соврем. мат. и ее прил. Темат. обз. 2021. Т. 199. С. 86-116. doi:10.36535/0233-6723-2021-199-86-116
- 15. Tyukalov Yu. Ya. Method of plates stability analysis based on the moments approximations // Magazine of Civil Engineering. 2020. № 3(95). P. 90-103. doi: 10.18720/MCE.95.9
- 16. Numerical and experimental studies on drying behavior of radio frequency assisted convective drying for thin-layer corn kernels / Sh. Wei, W. Xie, Zh. Zheng, et al. // Computers and Electronics in Agriculture. 2021. Vol. 191. P. 106520. doi:10.1016/j.compag.2021.106520
- 17.Radio-frequency treatment of medium-gluten wheat: effects of tempering moisture and treatment time on wheat quality / Y. Cheng, Ju. Jiang, Q. Chen, et al. // Journal of the Science of Food and Agriculture. 2023. Vol. 103. No. 9. P. 4441-4449. doi: 10.1002/jsfa.12539
- 18.Investigation of radio frequency heating uniformity of wheat kernels by using the developed computer simulation model / Sh. Jiao, Yun D., Yu Zh., et al. // Food Research International. Vol. 71. 2015, P. 41–49. doi: 10.1016/j.food-res.2015.02.010
- 19.Radio Frequency Vacuum Drying Study on the Drying Characteristics and Quality of Cistanche Slices and Analysis of Heating Uniformity / Ao. Chen, F. Wan, G. Ma et al. // Foods. 2024. Vol. 13. No. 17. P. 2672. doi:10.3390/foods13172672
- 20.Shrestha B. Baik O. D. Radio frequency selective heating of stored-grain insects at 27.12 MHz: A feasibility study // Biosystems Engineering. 2013. Vol. 114, No. 3. P. 195-204. doi: 10.1016/j.biosystemseng.2012.12.003
- 21. Gibson, Walton C. The Method of Moments in Electromagnetics. Chapman & Hall / CRC. 2008. 272 p. ISBN 978-1-4200-6145-1
- 22.Королев В. А. Башилов А. М. Моделирование процессов управления в АПК // Вестник аграрной науки Дона. 2019. № 4(48). С. 49-55

References

- 1. Lebedeva A. V., Ryabov V. M. Method of moments in the problem of inversion of the Laplace transform and its regularization // Vestnik of St. Petersburg University. Mathematics. Mechanics. Astronomy. 2022. Vol. 9, No.1. P. 46-52. doi: 10.21638/spbu01.2022.105.
- 2. Postnov S. S. I-The problem of moments in optimal control problems and state estimation for multidimensional linear fractional systems // Proceedings of Voronezh International Spring Mathematical School "Modern Methods of Boundary Value Problems. Pontryagin Readings-XXXIV", Voronezh, May 3-9, 2023. Part 2, Results of Science and Technology. Modern Maths and its Application. Topical Review, 231, VINITI RAS, Moscow, 2024. P. 107-114. doi: 10.36535/2782-4438-2024-231-107-114
- 3. Basan S. N., Bakhvalov Yu. A., Yufanova Yu. V. Method of point electric moments in problems of calculating disturbed electric fields // Vestnik of higher educational institutions. Electromechanics. 2020. Vol. 63. No.5. P. 17-22. doi: 10.17213/0136-3360-2020-5-17-22
- 4. Mokrova N. V., Grigoriev A. O., Artemyev V.S. Synthesis of finite control in the agro-industrial complex under pulsed loads // Vestnik of the Chuvash State Agrarian University. 2024. No.3 (30). P. 189-197. doi: 10.48612/vch/3t59-rm1b-2mte
- 5. Balaban O. R. Approximation of evolutionary differential systems with distributed parameters on networks and the method of moments // Modeling, improvement and information technology. 2019. Vol. 7. No. 3 (26). P. 11. doi:10.26102/2310-6018/2019.26.3.040

- 6. Kopyttsev V. A., Mikhailov V. G. Method of moments and sums of random indicators // Scientific works of Mathematical Institute named after V. A. Steklov. 2022. Vol. 316. P. 235-247. doi:10.4213/tm4208
- 7. Wang Yi., Wu J. Energy storage configuration method for distribution networks based on moment difference analysis // Energy. 2024. Vol. 311. P. 133376. doi: 10.1016/j.energy.2024.133376
- 8. Li J., Zhang L., Qin Q. A regularized method of moments for three-dimensional time-harmonic electromagnetic scattering //Applied Mathematics Letters. 2021. Vol. 112. P 106746. doi: 10.1016/j.aml.2020.106746
- 9. Gabasov R., Dmitruk N. M., Kirillova F. M. On the problem of optimal control of dynamic systems in real time // Results of Science and Technology. Modern Mathematics and Its Applications. Thematic Reviews. 2020. Vol. 183. P. 98-112. doi:10.36535/0233-6723-2020-183-98-112
- 10. Li J., Zhang L., Qin Q. A regularized fast multipole method of moments for rapid calculation of three-dimensional time-harmonic electromagnetic scattering from complex targets // Engineering Analysis with Boundary Elements. 2022. 142. P. 28-38. doi: 10.1016/j.enganabound.2022.06.001
- 11. Rapoport E. Ya. Uniform optimization of controlled systems with distributed parameters // Vestnik of Samara State Technical University. Series: Physical and Mathematical Sciences. 2022. No.3. P. 419–445. doi: 10.14498/vsgtu1943
- 12. Melyukov V. V., Maksimov A. E., Grachev S. P. Conditions for applying the method of moments in optimizing the solidification process of a metal weld // Advanced Science. 2019. No.1(12). P. 62-65. doi: 10.25730/VSU.0536.19.011.
- 13. Tong M., Zhao Y., Lu Z. Normal transformation for correlated random variables based on L-moments and its application in reliability engineering // Reliability Engineering & System Safety. 2021. Vol. 207. P. 107334. doi: 10.1016/j.ress.2020.107334
- 14. Postnov S. S. I-The problem of moments and optimal control for systems modeled by fractional-order equations with multiparameter and "non-singular" derivatives // Results of Science and Technology. Modern Maths and its Application. Thematic Review. 2021. Vol. 199. P. 86-116. doi:10.36535/0233-6723-2021-199-86-116
- 15. Tyukalov Yu. Ya. Method of plates stability analysis based on the moments approximations // Magazine of Civil Engineering. 2020. No.3(95). P. 90-103. doi: 10.18720/MCE.95.9
- 16. Numerical and experimental studies on drying behavior of radio frequency assisted convective drying for thin-layer corn kernels / Sh. Wei, W. Xie, Zh. Zheng, et al. // Computers and El electronics in agriculture. 2021. Vol. 191. P. 106520. doi: 10.1016/j.compag.2021.106520
- 17. Radio-frequency treatment of medium-gluten wheat: effects of tempering moisture and treatment time on wheat quality / Y. Cheng, Ju. Jiang, Q. Chen, et al. // Journal of the Science of Food and Agriculture. 2023. Vol. 103. No.9. P. 4441-4449. doi: 10.1002/jsfa.12539
- 18. Investigation of radio frequency heating uniformity of wheat kernels by using the developed computer simulation model / Sh. Jiao, Yun D., Yu Zh., et al. // Food Research International. Vol. 71. 2015. P. 41–49. doi: 10.1016/j.food-res.2015.02.010
- 19. Radio Frequency Vacuum Drying Study on the Drying Characteristics and Quality of Cistanche Slices and Analysis of Heating Uniformity / Ao. Chen, F. Wan, G. Ma, et al. //Foods. 2024. Vol. 13. No. 17. P. 2672. doi:10.3390/foods13172672
- 20. Shrestha B. Baik O. D. Radio frequency selective heating of stored-grain insects at 27.12 MHz: A feasibility study // Biosystems Engineering. 2013. Vol. 114, No.3. P. 195-204. doi: 10.1016/j.biosystemseng.2012.12.003
- 21. Gibson, Walton C. The Method of Moments in Electromagnetics. Chapman & Hall / CRC. 2008. 272 p. ISBN 978-1-4200-6145-1
- 22. Korolev V. A. Bashilov A. M. Modeling of control processes in the agro-industrial complex // Vestnik of agrarian science of the Don. 2019. No.4(48). P. 49-55.