ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В СЕЛЬСКОМ ХОЗЯЙСТВЕ

Яковлев С.А., доктор технических наук, доцент, тел.: 8(8422)55-95-97, Jakseal@mail.ru

Хвостов Н.В., кандидат сельскохозяйственных наук, доцент, тел.: +79372784162, nvchvostov@mail.ru

Прусов В.В. студент

Власов Д.В. студент

ФГБОУ ВО Ульяновский ГАУ

Ключевые слова: беспилотный летательный аппарат, сельскохозяйственное производство, преимущество, качество, проблема

В работе проведён SWOT-анализ использования беспилотных летательных аппаратов в сельском хозяйстве и выявлены её основные особенности. Проанализированы преимущества и недостатки такой техники, а также определены основные направления дальнейших исследований.

Введение. Для обеспечения качества сельскохозяйственной продукции используется различная техника и технологии [1-5]. В сельскохозяйственном производстве беспилотные летательные аппараты (БПЛА) эффективно используют для внесения химических препаратов и минеральных удобрений на посевы [6, 7]. С помощью БПЛА можно сканировать землю и равномерно распылять оптимальное количество жидкости, с учетом расстояния до земли, культуры и погодных условий. Стоит отметить, что в сельском хозяйстве такие летательные аппараты обычно называют агродронами. Агродроны относятся к беспилотным воздушным суднам (БВС) класса свыше 30 кг (промышленным дронам). Связано это с тем, что основная функция агродронов заключается в переносе груза от 15 до 50 кг (жидких или сыпучих агрохимикатов на высоте до 10-14 метров) для дальнейшего их авиационного внесения на поля с высокостебельными культурными растениями. Стоимость таких агродронов существенно выше относительно мониторинговых БПЛА до 30 кг или промышленных транспортных БПЛА, так как агродроны многофункциональны и так же проводят визуальный мониторинг и транспортируют груз с распределением его строго по установленной норме внесения.

Материалы и методы исследований. При исследованиях использовались такие методы научного познания, как наблюдение, анализ, синтез, методы обобщения и функциональной классификации.

Результаты исследований и их обсуждение. Анализ научных работ в этой области показал, что использование современных БПЛА имеет ряд особенностей, обусловленных спецификой условий сельского хозяйства и показателями экономической эффективности [2, 6, 7]. Результаты проведенного обзора представлены по примеру SWOT-анализа [8] в виде таблицы.

Таблица - Анализ использования БПЛА (агродронов) при обработке сельскохозяйственных культур

	Слабые стороны
	Малая грузоподъемность
Сильные стороны	Высокая стоимость материалов и
Отсутствие механического	оборудование для ремонта и обслуживания
влияния на почву и растения	Высокая стоимость программного
Адаптация под системы точного	обеспечение для управления и
земледелия (сбор данных о	позиционирование, а также хранение анализа
состояние территория и культур)	данных
Возможность организации	Ограниченная емкость и большой вес
круглосуточной работы	элементов питания
Экологически чистая энергия (в	Экологическая опасность при использовании
основном используется	легких аэрозолей
электрическая энергия)	Законодательная база (получение
	разрешений)
	Малое количество зарегистрированных
	ультрамалообъемных препаратов
Возможности	Угрозы
Модернизация программного	Повреждение БПЛА птицами, ветвями
обеспечение (адаптация для	деревьев, вандальными действиями
потребностей систем точного	Растворы и пыль способствуют выходу из
земледелия)	строя электрического оборудования
Многоцелевое использование	Отклонение от траектории полета под
(опрыскивание, мониторинг,	действием атмосферных и
охрана, логистика)	электромагнитных явлений
Повышение коэффициента	Несовершенность Законодательной базы,
использование техники	тем самым проявление ограничений по
	использованию БПЛА

Проведенный выше SWOT-анализ использования беспилотных сельском хозяйстве аппаратов В летательных показал целесообразность объединения штангового опрыскивателя, элементов малой авиации и БПЛА. Такое направление позволит повысить эффективность обработки сельскохозяйственных растений за счет «снижения затрат на обработку (повышается скорость работ, снижаются требования к дисперсности рабочего раствора, повышается оборудования) и повышения качества (увеличение глубины проникновения аэрозоля, уменьшение выноса рабочего раствора ветром)» [7].

Заключение. Данное направление выполнения дальнейших исследований и практических экспериментов позволят повысить полезный вес дронов, увеличить время работы и эффективность использования на сельскохозяйственных угодьях. Перечисленное станет возможным за счет увеличения ширины захвата, повышения скорости обработки и глубины проникновение рабочих растворов в кроны сельскохозяйственных культур. Это позволит снизить расходы на топливо-смазочные материалы, повысит качество и скорость обработки, снизит требования к скорости ветра во время опрыскивания.

Библиографический список:

- 1. Яковлев, С.А. Результаты металлографических исследований режущих частей культиваторных лап, изготовленных из стали 30MnB5 / С. А. Яковлев, В.И. Курдюмов, В.Е. Прошкин [и др.] // Тракторы и сельхозмашины. 2024. Т. 91, No 5. С. 637–645.
- 2. Анализ результатов полевых исследований пружинноволнового катка / В. Е. Прошкин, В.И. Курдюмов, Е.Н. Прошкин [и др.] // Тракторы и сельхозмашины. -2023. T. 90, № 5. C. 405-412.
- 3. Обеспечение самозатачивания режущих частей рабочих органов сельскохозяйственной техники точечной электромеханической обработкой / С. А. Яковлев, В. И. Курдюмов, А. А. Глущенко [и др.] // Упрочняющие технологии и покрытия. 2021. Т. 17, № 9(201). С. 419-423.
- 4. Яковлев, С. А. Технологическое обеспечение качества электромеханической обработки деталей машин / С. А. Яковлев, В. И.

Курдюмов. – Ульяновск : Ульяновский государственный аграрный университет им. П.А. Столыпина, 2024. – 258 с.

- 5. Результаты исследований структуры и микротвердости режущих частей лап культиваторов John Deere / С. А. Яковлев, В. И. Курдюмов, Н. П. Аюгин [и др.] // Упрочняющие технологии и покрытия. 2023. Т. 19, № 12(228). С. 538-542.
- 6. Koval' Z.M. Dinamic aerosol chamber with photometric principle of operation Kireev I.M., Koval' Z.M. Measurement Techniques. Springer. New York Consultants Bureau T.58. № 12. 2016. P. 1392-1395.
- 7. Quality As A Factor Of Social Responsibility Of Education / E. Y. Levina, L. A. Apanasyuk, S. A. Yakovlev [et al.] // Modern Journal of Language Teaching Methods. 2017. Vol. 7, No. 4. P. 34-45.
- 8. Яковлев, С. А. Методы и средства технических измерений: Учебное пособие / С. А. Яковлев. Ульяновск : Ульяновская государственная сельскохозяйственная академия им. П.А. Столыпина, 2009. 75 с.

FEATURES OF THE USE OF UNMANNED AERIAL VEHICLES IN AGRICULTURE

Yakovlev S.A., Khvostov N.V., Prusov V.V., Vlasov D.V.

Keywords: unmanned aerial vehicle, agricultural production, advantage, quality, problem

The paper conducted a SWOT analysis of the use of unmanned aerial vehicles in agriculture and identified its main features. The advantages and disadvantages of such a technique are analyzed, and the main directions of further research are determined.