УДК 631.895:631.41:633.16

ВЛИЯНИЕ ДИАТОМИТА И ОРГАНОМИНЕРАЛЬНОГО УДОБРЕНИЯ НА ЕГО ОСНОВЕ НА ФОРМИРОВАНИЕ ВЛАГОЗАПАСОВ ПОЧВЫ

Смирнов П.П., аспирант Куликова А.Х., доктор сельскохозяйственных наук, профессор, тел.: 88422559568, agroec@yandex.ru ФГБОУ ВО Ульяновский ГАУ

Ключевые слова: диатомит, органоминеральное удобрение, ячмень, влагосбережение.

данной работе изучено влияние диатомита органоминеральных удобрений на запасы продуктивной влаги в чернозёме типичном при возделывании ячменя. Оценивалась динамика влажности почвы в разные фазы вегетации и средний запас доступной влаги. Результаты исследования показали, что диатомит, особенно в дозе 500 кг/га, эффективно удерживает влагу, снижая её потери в засушливые периоды. В начале вегетации запасы доступной влаги в пахотном слое 8,5 мм по сравнению с контролем, а к концу вегетации удалось сохранить на 2,6 мм больше. Органоминеральное удобрение также способствовало накоплению влаги, но менее выраженно. Средние запасы продуктивной влаги в слое почвы глубиной 30 см увеличились на 4,7 мм при внесении 500 кг/га диатомита, подтверждая его высокую влагоудерживающую способность.

Введение. Сохранение влаги в почве – ключевой фактор устойчивости сельскохозяйственных культур к засухе. Чернозёмы, несмотря на высокое плодородие, теряют значительные запасы влаги из-за испарения, что снижает продуктивность растений. Для решения этой проблемы важно применять влагоудерживающие вещества, способные снижать потери воды и улучшать водный режим почвы [1-3]. Перспективным решением является использование диатомита и органоминеральных удобрений. Диатомит, благодаря пористой структуре, снижает испарение И удерживает влагу,

органоминеральные удобрения улучшают структуру почвы и её влагоёмкость [4-5]. Однако их влияние на водный режим чернозёма при возделывании ячменя изучено недостаточно. В данной работе исследуется влияние различных доз диатомита и органоминеральных удобрений на запасы продуктивной влаги в 30-см слое почвы, что позволит определить наиболее эффективные подходы к её сохранению.

Объекты и методы исследования. Исследование по изучению влияния диатомита, минерального и органоминерального удобрений на влагозапасы чернозема типичного проводили на опытном поле Ульяновского ГАУ имени П. А. Столыпина.

Исследованию подвергались:

- диатомит Инзенского месторождения Ульяновской области;
- куриный помет птицефабрики «Ульяновская»;
- органоминеральное удобрение на основе диатомита и куриного помета (соотношение компонентов 4:1);
- ячмень сорта Камашевский селекции
 ТатНИИСХ ФИЦ КазНЦ РАН;
- почва опытного поля чернозем типичный среднесуглинистый с содержанием гумуса 4,0 %, подвижных фосфора и калия (по Чирикову) 145 и 90 мг/кг почвы соответственно;
 - минеральное удобрение: $N_{40}P_{40}K_{40}$ (Нитрофоска, NPK).

Схема полевого опыта включала 10 вариантов. В данной работе приведены результаты 5 из них:

1. Контроль (естественный фон), условное обозначение — К; 2. Диатомит 250 кг/га — Д 250; 3. Диатомит 500 кг/га — Д 500; 4. Органоминеральное удобрение на основе диатомита и куриного помета 250 кг/га — ОМУ 250; 5. Органоминеральное удобрение на основе диатомита и куриного помета 500 кг/га — ОМУ 500;

Общая площадь делянки 40 m^2 (4x10), учетная 20 m^2 (2*10), расположение их рендомизированное, повторность четырехкратная, учет урожая проводили с площади всей делянки прямым комбайнированием.

Результаты и обсуждение. Изучение влияния удобрений на запасы продуктивной влаги в 30-см слое почвы показало, что их применение способствует улучшению водного режима чернозёма типичного в разные фазы вегетации ячменя (табл.).

Таблица 1 - Запасы продуктивной влаги в 30 см слое почвы в зависимости от используемых удобрений, мм

Νo	Вариант	Продуктивная влага, мм			
140		15.05.2024	01.07.2024.	10.08.2024	Средняя
1.	Контроль	59,0	38,0	14,2	27,8
2.	Диатомит 250 кг/га	62,6	40,2	15,2	29,5
3.	Диатомит 500 кг/га	67,5	45,7	16,8	32,5
4.	Органоминеральное удобрение 250 кг/га	62,1	40,5	15,0	29,4
5.	Органоминеральное удобрение 500 кг/га	64,9	41,0	16,1	30,5

В начальный период (15.05.2024) почва содержала максимальные запасы влаги после схода снега, что создаёт оптимальные условия для всходов и начального роста растений. В контрольном варианте показатель влаги составил 59,0 мм. Внесение диатомита оказало более влияние на влагосбережение ПО сравнению с органоминеральным удобрением. Так, применение диатомита в дозе 250 кг/га увеличило запасы продуктивной влаги до 62,6 мм, а при внесении 500 кг/га показатель достиг 67,5 мм, что на 7,8 % выше контрольного значения. Это подтверждает, что диатомит, обладая высокой пористостью, способен удерживать воду и снижать её испарение. Органоминеральное удобрение также способствовало накоплению влаги, однако его влияние оказалось менее выраженным: при внесении 250 кг/га влажность составила 62,1 мм, а при увеличении дозы до 500 кг/га - 64,9 мм. Это свидетельствует о том, что органоминеральное удобрение оказывает стимулирующее воздействие на почвенные процессы, однако их влагоудерживающий эффект уступает диатомиту.

В период активной вегетации (01.07.2024) запасы влаги существенно сокращались из-за интенсивного потребления воды растениями. В контрольном варианте влажность снизилась до 38,0 мм, что свидетельствует о значительных потерях влаги. Внесение удобрений несколько замедлило этот процесс. Диатомит в дозе 250 кг/га способствовал сохранению влаги на уровне 40,2 мм, а при увеличении дозы до 500 кг/га – 45,7 мм. Это подтверждает его способность снижать потери влаги в почве, что особенно важно в условиях засушливых Органоминеральное периодов. удобрение, напротив, продемонстрировало значительного эффекта, обеспечив лишь

небольшое увеличение влаги по сравнению с контролем: при внесении 250 кг/га влажность составила 40,5 мм, а при внесении 500 кг/га — 41,0 мм. Эти данные показывают, что органоминеральное удобрение оказывает умеренное влияние на водный режим почвы, но не способно существенно замедлить потери влаги в засушливые фазы вегетации.

К концу вегетации (10.08.2024) запасы влаги практически исчерпываются, что может стать ограничивающим фактором для наливания зерна и завершения вегетационного периода. В контрольном варианте влажность почвы составила всего 14,2 мм, что указывает на критический дефицит влаги. Внесение диатомита позволило снизить потери воды: при дозе 250 кг/га влажность составила 15,2 мм, а при 500 кг/га — 16,8 мм. Последнее свидетельствует о длительном влагоудерживающем действии диатомита, которое способствует повышению устойчивости растений к засушливым условиям в конце вегетации. Влияние органоминерального удобрения оказалось менее выраженным: при внесении 250 кг/га количество влаги составило 15,0 мм, а при внесении 500 кг/га — 16,1 мм.

Средний запас влаги за весь вегетационный период позволяет оценить долговременное влияние удобрений на водный режим почвы. В контрольном варианте этот показатель составил 27,8 мм. Диатомит показал наиболее выраженное влияние на влагосбережение, увеличив средний показатель влаги до 29,5 мм при внесении 250 кг/га и до 32,5 мм при внесении 500 кг/га, что на 16,9 % выше контрольного значения. Органоминеральное удобрение обеспечило небольшое увеличение продуктивной влаги, увеличив её среднее значение до 29,4 мм при дозе 250 кг/га и до 30,5 мм при 500 кг/га, что указывает на его умеренное влияние. Эти результаты подтверждают, что наибольший эффект по влагосбережению достигается при внесении диатомита в дозе 500 кг/га, что делает его перспективным средством для повышения влагоудерживающей способности чернозёмов и адаптации земледелия к условиям дефицита влаги.

Заключение. Исследование показало, что внесение диатомита и органоминерального удобрения влияет на водный режим чернозёма при возделывании ячменя. Диатомит, особенно в дозе 500 кг/га, способствовал накоплению и удержанию влаги, снижая её потери в

засушливые периоды. Органоминеральное удобрение также оказало положительное влияние, но в меньшей степени.

Средние показатели влажности подтвердили, что диатомит 500 кг/га увеличивает влагосбережение на 16,9 % по сравнению с контролем, делая его применение наиболее эффективным вариантом. Его применение перспективно для поддержания водного баланса почвы, снижения засухоустойчивости растений и повышения урожайности в условиях дефицита влаги.

Библиографический список:

- 1. Кремний и высококремнистые породы в системе удобрения сельскохозяйственных культур / А. Х. Куликова. Ульяновск. 2013. 176 с.
- 2. Кремний в почвах и растениях / Н. Е. Самсонова // Агрохимия. 2005. №6. С. 76–86.
- 3. Изменение урожайности и качества растениеводческой продукции под влиянием диатомита и его сочетание с птичьим пометом / А. И. Арефьев, К. Ю. Ковальский // Кремний и жизнь. Кремнистые породы в сельском хозяйстве: Материалы научно практической конференции с Международным участием. Ульяновск. 2021. С. 3–8.
- 4. Изменение агрофизических свойств чернозема выщелочного в зависимости от применения местных кремнийсодержащих пород и удобрений / Н. П. Чекаев, А. Е. Рябов, Т. А. Власова, Ю. В. Корягин // Нива Поволжье. 2019. №4 (53). С. 93–101.
- 5. Влияние экологически чистого органоминерального удобрения на плодородие почвы / Р. Нуров Реджепнур, К. Я. Аманов // Плодородие. 2021. №6. С. 29–33. DOI: 10.25680/S19848603.2021.123.08.

INFLUENCE OF DIATOMITE AND ORGANOMINERAL FERTILIZER BASED ON IT ON THE FORMATION OF SOIL MOISTURE RESERVES

Smirnov P.P., Kulikova A.H.

Key words: diatomite, organomineral fertilizer, barley, moisture conservation

This paper studies the effect of diatomite and organomineral fertilizers on productive moisture reserves in typical barley-growing chernozem. The dynamics of soil moisture in different vegetation phases and the average reserve of available moisture were assessed. The results showed that diatomite, especially at a dose of 500 kg/ha, effectively retains moisture, reducing its losses during dry periods. At the beginning of the growing season, soil moisture increased by 14.4% compared to the control, and by the end of the growing season, 18.3% more moisture was retained. Organomineral fertilizer also contributed to moisture accumulation, but less significantly. Average reserves of productive moisture in a 30 cm deep soil layer increased by 16.9% with the introduction of 500 kg/ha of diatomite, confirming its high moisture-holding capacity.