УДК 619:578.832.1

ОТРАБОТКА ПАРАМЕТРОВ КУЛЬТИВИРОВАНИЯ ВИРУСА ГРИППА ПТИЦ H5N2 НА КУРИНЫХ ЭМБРИОНАХ WORKING OFF PARAMETERS OF POULTRY FLUE H5N2 VIRUS CULTIVATION ON POULTRY EMBRYOS

Ю.Н. Минчук U.N. Mintchuk

РУП «Институт экспериментальной ветеринарии им. С.Н. Вышелесского» RUE "Institute of experimental veterinary named after S.N. Vyshelessky"

As a result of research conducted it was determined that low concentration and GAA of poultry flue H5N2 was noticed at infection of 9-day KE in chorion-allantoic membrane in the amount of 100 lg $EID_{50/0,2ml}$ with further cultivation within 72 hours. Keeping these parameters we obtain maximum possible volume of virus containing material with IT 7,0-7,5 lg $EID_{50/ml}$ and GAA 6-8 log_a.

Среди вирусов, способных вызвать эпизоотические ситуации, борьба с которыми на этапе их возникновения трудна или вообще невозможна, особенно опасны вирусы гриппа. В последнее десятилетие во многих странах мира зарегистрированы эпизоотические вспышки данного заболевания среди птиц. Для того чтобы защитить поголовье в промышленном птицеводстве существует система мер по соблюдению биологической безопасности. Кроме этого при угрозе возникновения болезни важным средством борьбы является вакцинопрофилактика [1-9].

Для получения высокоэффективного препарата необходим подтип вируса, гомологичный циркулирующему подтипу по гемагглютинину, обладающий способностью к накоплению в высоких титрах в биологическом материале, а также высокой гемагглютинирующей активностью (ГАА). Перед нами была поставлена задача установить оптимальные параметры культивирования вируса гриппа птиц (ВГП) H5N2 с инфекционным титром (ИТ) 7,0 lg 9ИД $_{50/мл}$ и ГАА 8 log $_2$ в КЭ для его накопления и последующего изготовления на его основе инактивированной вакцины.

КЭ 9-, 10- и 11-ти суточного возраста заражали ВГП H5N2. В хорионаллантоисную оболочку инокулировали по 0,2 мл вируссодержащего материала в дозах 100 lg 9ИД $_{50/0,2$ мл</sub> и 1000 lg 9ИД $_{50/0,2$ мл</sub>. Использовали по 12 КЭ каждого возраста для заражения вышеуказанными дозами. Культивировали в условиях инкубатора при температуре +37,0°С и относительной влажности 60%, проводя овоскопирование 1 раз в сутки. Наибольшая концентрация вируса и его ГАА наблюдается в период гибели эмбрионов. Поэтому при овоскопировании отбирали умерших КЭ и помещали их в холод. Гибель в течение первых 24 часов считали неспецифической. В последующем через 48, 72 и 96 часов из инкубатора отбирали по 4 КЭ всех возрастов, зараженных 100 lg 9ИД $_{50/0,2$ мл</sub>, и 1000 lg 9ИД $_{50/0,2$ мл, охлаждали при температуре +6°С в течение 12-24 часов и вскрывали. Экстраэмбриональную жидкость от каждого КЭ проверяли в капельной реакции гемагглютинации (РГА) на стекле с 1%-й взвесью эритроцитов петуха на наличие

гемагглютинирующего вируса. Если РГА была положительной, то жидкости от каждой группы эмбрионов стерильно отбирали в отдельные флаконы. В полученном таким образом вируссодержащем материале определяли гемагглютинирующую и инфекционную активность. ГАА вируса проверяли постановкой иммунологических планшетах с U-образным дном. Для исследования ИТ заражали 9-суточных КЭ десятикратными разведениями вируса. На каждое разведение использовали по 4 КЭ, вводя по 0,2 мл вируссодержащего материала в хорионаллантоисную оболочку. Инкубировали 96 часов при температуре +37.0°C и влажности 60% в условиях инкубатора. Гибель КЭ в течение первых 24 часов считали неспецифической и при определении ИТ вируса не учитывали. По истечении срока инкубации эмбрионы охлаждали и вскрывали. Определяли наличие вируса в экстраэмбриональной жидкости с помощью капельной РГА на стекле с 1%й взвесью эритроцитов петуха. $ЭИД_{50}$ рассчитывали по методу Кербера в модификации Ашмарина.

В результате проведенного исследования было установлено, что наибольшая концентрация и ГАА вируса гриппа птиц H5N2 наблюдается при заражении им 9-суточных КЭ в хорион-аллантоисную оболочку в дозе 100 lg 9ИД $_{50/0,2$ мл</sub>, при дальнейшем культивировании в течение 72 часов. Соблюдая данные параметры, мы получаем максимально возможный объем вируссодержащего материала с ИТ 7,0-7,5 lg 9ИД $_{50/мл}$ и ГАА 6-8 log $_2$.

Литература

- 1. Грипп и другие вирусные инфекции птиц / В. А. Бакулин [и др.]; Рос. акад. с.-х. наук, Всерос. науч.-исслед. ветеринар. ин-т птицеводства, Рос. акад. мед. наук, ГУ Науч.-исслед. ин-т гриппа. Санкт-Петербург, 2005. 74 с.: ил.
- 2. Макаров, В. В. Высокопатогенный грипп птиц / В. В. Макаров // Ветеринария в птицеводстве. 2004. № 1. С. 47-48.
- 3. Испытание вакцины против высокопатогенного гриппа птиц в эксперименте / Э. Д. Джавадов [и др.] // Птица и птицепродукты. 2006. N 3. С. 40-41
- 4. Domanska-Blicharz, K. Molecular methods for the detection of avian influenza type a viruses / K. Domanska-Blicharz, K. Smietanka, Z. Minta // Bull. Veter. Inst. in Pulawy. 2006. Vol. 50, № 3. P. 287-291.
- 5. Brugh, M. Pathogenicity of three avian influenza viruses for Leghorn hens of different ages / M. Brugh // Avian Dis. 1996. Vol. 40, № 3. P. 725-728.
- 6. Immunity to Mexican H5N2 avian influenza viruses induced by a fowl-pox-H5 recombinant / R. G. Webster [et al.] // Avian Dis. 1996. Vol. 40, N 2. P. 461-465.
- 7. Лагуткин, Н. Грипп птиц / Н. Лагуткин // Птицеводство. 1997. № 1. С. 22-23
- 8. Swayne, D. E. Pathobiology of H5N2 Mexican avian influenza virus infections of chickens / D. E. Swayne // Veter. Pathol. 1997. Vol. 34, N 6. P. 557-567.
- 9. Experimental assessment of the pathogenicity of two avian influenza A H5 viruses in ostrich chicks (Struthio camelus) and chickens / R. J. Manvell [et al.] // Avian Pathol. 1998. Vol. 27, N 4. P. 400-404.