нению с моделью, в почве опытного поля наблюдается увеличение плотности сложения на 0.1-0.15 г/см³, снижение количества водопрочных агрегатов на 5-10% и содержания гумуса на 1-2%.

- 2. В результате сельскохозяйственного использования чернозема выщелоченного относительное снижение гумусированности по сравнению с целинными аналогами в слое почвы 0 40 см составляет 39 43%. Содержание гумуса в почве опытного поля на 17 30 % ниже модельных параметров.
- 3. Предложенный Почвенным институтом имени В.В. Докучаева региональный эталон чернозема выщелоченного необходимо откорректировать в соответствии с тем уровнем системы земледелия, которая сложилась в Ульяновской области.
- 4. При разработке регионального эталона чернозема выщелоченного необходимо комплексное изучение почв как агроэкосистем, так и их целинных аналогов. Эталоном для оптимизации агроэкосистем может служить природный ландшафт.

Литература:

- 1. Козловский Ф.И. Общие закономерности агропедогенеза черноземов на Русской равнине. / Тезисы докладов III съезда Докучаевского общества почвоведов. М., 2000. С. 63.
- 2. Куликова А.Х. Агроэкологическая концепция воспроизводства плодородия чернозема лесостепи Поволжья // Проблемы повышения продуктивности и устойчивости земледелия лесостепи Поволжья. Ульяновск, 1999. С. 11-19.
- 3. Почвы Поволжья / Мат. Междунар. Конгресса почвовед..- Пущино-на-Оке, 1974. С. 37 – 68.
- 4. Региональные эталоны почвенного плодородия. Под ред. Л. Л. Шишова, Д.С. Булгакова и др. М., 1991. С. 199 209.
- 5. Руководство по методике проведения полевых опытов. Под ред. В.И. Ермохина, Ю.А. Злобина, С.С. Берлянд, В.И. Морозова, Ф.М. Щербатова. Ульяновск, 1974. С.5 11.
- 6. Щербаков А.П., Васенев И.И. Русский чернозем на рубеже веков // Антропогенная эволюция черноземов. Воронеж, 2000. С. 50 57.

УДК 528.28

МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ГЕОДЕЗИЧЕСКИХ ИЗМЕРЕНИЙ ПРИ ПРОВЕДЕНИИ ЗЕМЛЕУСТРОИТЕЛЬНЫХ РАБОТ

И.Я. Мурзайкин, кандидат технических наук, доцент ФГОУ ВПО «Ульяновская государственная сельскохозяйственная академия» тел. (88422)35-95-35

Н.И. Сивакова, главный специалист-эксперт отдела геодезии и картографии Управления Росреестра по Ульяновской области

О.В. Слугина, студентка 4 курса агрономического факультета ФГОУ ВПО, «Ульяновская государственная сельскохозяйственная академия»,

Ключевые слова: метрологическое обеспечение, полевой компаратор, трубчатые знаки, нивелир, исследования

Key words: metrological maintenance, the field comparator, tubular marks, Level, researches

Рассматриваются вопросы метрологического обеспечения и использования простейших способов устройства полевых компараторов для текущего компарирования нивелиров, тахеометров и GPS-приемников.

При производстве геодезических работ обязательным условием стабильности работы приборов является систематический контроль геометрических и оптико-механических характеристик, положенных в основу конструкции инструмента и необходимость максимального устранения этих отклонений в процессе их эксплуатации. На всех стационарных объектах в местах дислокаций экспедиций, партий рекомендуется обустраивать полевые компараторы. Это необходимо, прежде всего, для систематического контроля работы светодальномеров, GPS приемников, электронных тахеометров и обычных теодолитов и нивелиров, независимо от их класса точности. Поэтому вопросам метрологического обеспечения при организации геодезических работ придается очень большое значение. В связи с прошедшими в последнее время административными реформами метрологическое обеспечение в сфере геодезии и картографии становится составной частью обеспечения единства измерений системы Росреестра. Постановлением Правительства Российской Федерации от 1 июня 2009 года №457 утверждено «Положение о Федеральной службе государственной регистрации, кадастра и картографии», в котором следует отметить два момента, касающихся единства измерений. Федеральная служба осуществляет метрологический надзор, создает метрологическую службу и определяет должностных лиц в целях организации деятельности по обеспечению единства измерений в области геодезии и картографии. Одним из важных шагов в этом направлении следует отметить проведение очередного семинара в конце 2009года в Великом Новгороде по вопросам метрологического обеспечения топографо – геодезических и картографических работ, организованного Федеральной службой

государственной регистрации, кадастра и картографии (Росреестр) Министерства экономического развития Российской Федерации. На семинаре были рассмотрены актуальные вопросы развития системы обеспечения единства измерений, в частности в области проведения геодезических работ, вытекающие из положений Федерального закона №102 ФЗ «Об обеспечении единства измерений».

Исключительное право на метрологическую аттестацию геодезических приборов предоставлено аккредитованным в установленном порядке специальным метрологическим лабораториям. Выполнение поверок приборов в этих лабораториях возложено на специалистовметрологов.

Спутниковое оборудование таких фирм, как THALES Navigation, Trimble Navigation, Leica Geosystems, Sokkia, Торсоп и др., находит широкое применение во многих организациях, выполняющих топографические и землеустроительные работы. Определение координат точек с миллиметровой точностью с помощью спутниковых наблюдений стало распространенной задачей в практике геодезических и землеустроительных работ. Достижение такой точности зависит как от спутниковой аппаратуры пользователей, так и от методической составляющей, важной частью которой является метрологическая аттестация и поверка аппаратуры. Особенность метрологической аттестации спутниковых приемников состоит в том, что аттестации подлежат как сам прибор (приемник и антенна), так и программное обеспечение, используемые для обработки результатов наблюдений.

Геодезическое производство получило и другие новые и разные по точности и назначению приборы: электронные светодальномеры, электронные тахе-

ометры, цифровые нивелиры и другую технику, которая также требует метрологического контроля.

Поэтому для испытания современной измерительной техники, ее метрологической аттестации и поверки, для исследования и совершенствования новых технологий, рассчитанных на использование такого оборудования, целесообразно иметь специальный эталонный полигон. В настоящее время научный геодезический полигон (НГП) представляет собой локальную геодезическую сеть с метрологическими объектами.

В состав НГП входят два метрологических объекта: образцовый линейный геодезический базис и фундаментальная геодезическая сеть.

Для обеспечения единства линейных измерений в геодезических сетях, передачи единицы длины от эталона рабочим средствам измерений: светодальномерам, электронным тахеометрам, лазерным рулеткам и другим приборам, а также для повышения качества и эффективности измерений на территории НГП создан и функционирует новый экспериментальный образцовый линейный геодезический базис усовершенствованной конструкции.

Как нам известно, на базисе с 2003 г. проводится периодическая метрологическая аттестация и поверка линейных приборов с оформлением соответствующих документов. При этом точность центрирования приборов обеспечивается не менее 0,2 мм. Как показали исследования, трубчатые центры стабильны во времени, а их конструкция обеспечивает достаточно эффективную работу в процессе измерений. Однако в результате проведенных работ нами также было установлено, что не менее важное место занимает и периодичность проводимых работ по аттестации приборов; при этом учитывая недостаточность существующих НГП- это представляет определенную трудность, создает неудобства в работе и приводит к значительным дополнительным финансовым затратам. Поэтому аттестация должна проводиться в два этапа. Основной - проводится в специализированной организации, например, 1 раз в три года; дополнителный - в пределах организации, выполняющей топографо - геодезические работы. При этом компарирование можно было бы проводить перед началом полевых работ на соответствующем объекте и по их завершении. Такой опыт у нас имеется, и он был получен нами при проведении высокоточных работ на объектах гидротехнического строительства. С учетом вышеизложенного, и с целью оптимизации геодезических измерений нами предлагается использовать простейшие способы обустройства полевых компараторов для проведения текущего компарирования геодезических приборов. Примеры приведены ниже:

1. Компаратор для нивелира.

До начала работ на объекте выполняют исследования и проверки нивелира по полной программе, предусмотренной инструкцией [2].

В дальнейшем в процессе работы проводят:

- а) поверку и исправления установочных уровней;
- б) систематический контроль соблюдения основного условия нивелирования (определения угла« і »);

Поверку установки цилиндрического уровня (определения угла « і ») выполняют как минимум 1 раз в 10 дней. С этой целью на строительной площадке (на ровной поверхности) закрепляют постоянными марками в виде тумб точки А и В для установки на них реек. На расстоянии 5 м, с обеих сторон от реек закрепляют 2 марки (на оборудованных бетонных площадках (рис.1).

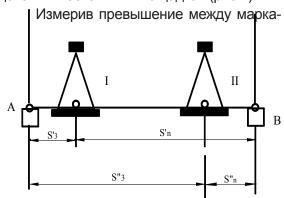


Рис. 1.Схема определения угла«і»

ми A и B сначала на станции I, а затем на станции II, вычисляют угол і по формуле:

$$i = \frac{(h_{I} - h_{i})r}{(S_{3}^{"} - S_{n}^{"}) - (S_{3}^{'} - S_{n}^{'})}, (1)$$

где $h_{..}$ и $h_{..}$ – превышения между марками A и B, измеренные на станции I и II;

 S'_3 и S'_n – расстояния от станции I до задней (A) и передней (B) марок;

 S_3^n и S_n^n - то же, на станции II.Принимается для удобства вычислений $S_3^n = S_n^n = 5$ м; $S_n^n = S_3^n = 39,4$ м.

Таким образом, общая длина компаратора составляет 44,4 м, тогда формула (1) примет вид; $i=3(h_{ij}-h_{j})$ (2)

На рис 1. приведен один из вариантов определения угла і. Но угол і может быть определен и по другим формулам.

В формуле (1) значения h принимают в мм, тогда угол i получается в секундах; значения i не допускают более 10". На этом компараторе контроль основного условия выполняется для всех типов нивелиров.

Для компарирования светодальномеров, электронных тахеометров, системы GPS и др., компаратор на объекте обустраивается из расчета измеряемых линий в пределах от 500 до 1500м; могут быть и другие размеры. В качестве опорных знаков используются трубчатые знаки, вынесенными центрами на верх столиков, (рис.2). Как правило, начальный пункт - под номером 1.

Исключительное значение имеет выбор места для компаратора с целью обеспечения его стабильности. Измерения линий выполняются со всех 3-х центров. Измеренные линии не приводятся к горизонту и не редуцируются, сравнения из цикла в цикл производятся по наклонным линиям (высота инструмента и визирной цели в циклах остаются без изменений). То же самое можно сделать, используя и горизонтальные проложения. Аналогичные измерения производятся, используя и систему GPS.

Разность измеренных расстояний должна соответствовать известным величинам ${\rm d_1}$ и ${\rm d_2}$, а также длине компаратора, если эти величины из цикла в цикл будут

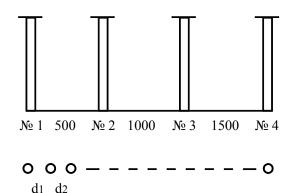


Рис. 2. Полевой компаратор

соответствовать разности измеренных расстояний, то это будет свидетельством стабильной работы светодальномера. В противном случае следует установить причины колебаний и принять меры для последующего учета и введения поправок в измеренные линии. Обычно препятствием обустройства компаратора является отсутствие базисного прибора (БП-2) или просто нежелание возиться с базисными измерениями, довольно - таки сложным и хлопотным делом. Для исключения всех проблем нами предлагается базисные измерения не проводить, а использовать стационарный компаратор, имеющийся в предприятиях ГУГК (старое название) или специализированных организациях. Светодальномер используется для передачи тарированного расстояния на компаратор. С помощью светодальномера измеряется длина известного компаратора, устанавливается поправочный коэффициент, и производятся измерения длин линий нового компаратора. Расстояния принимаются за истинное значение для последующего использования в качестве компаратора.

Литература:

1.И.Я. Мурзайкин, А.И. Нужный. Геодезические методы определения осадок и смещений сооружений. - Ульяновск, УГСХА,2008.-258с.

2.Инструкция по нивелированию 1,11,111,1V классов.-М.:Недра,1990.

3.Мурзайкин И.Я. Опорные знаки и визирные цели привысокоточных измерениях //Вестник ТашГТУ, Ташкент.: 2006,№2.