МИГРАЦИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В МОЛОКО КОРОВ В УСЛОВИЯХ ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПОЛЛЮТАНТАМИ И КСЕНОБИОТИКАМИ

А.М. Маменко, доктор с.-х. наук, профессор зав. кафедрой прикладной экологии им. А.А. Колесова

С.В. Портянник, кандидат с.-х. наук, доцент кафедры прикладной экологии им А.А. Колесова E-mail: zoovet_kaf_ecology@rambler.ru Харьковская государственная зооветеринарная академия г. Харьков, Украина 62341

Ключевые слова: кадмий, свинец, медь, цинк, агроэкосистемы, молоко, загрязнение окружающей среды, производство экологически чистого молока.

Key words: cadmium, lead, copper, zinc, agricultural, milk, pollution, production of clean milk.

В статье изложены вопросы загрязнения окружающей природной среды тяжелыми металлами, такими, как кадмий, свинец, медь, цинк и их миграция в системе почва - растение - организм - животного - продукция (молоко). Установлены участки локального загрязнения агроэкосистем вблизи промышленного центра и других техногенно опасных объектов.

Введение. Загрязнение окружающей природной среды тяжелыми металлами, в частности такими опасными, как кадмий и свинец, обостряется во многих странах СНГ. В странах Европейского Союза загрязнение данными поллютантами связано преимущественно с выбросами автотранспорта, но государственная экологическая политика направлена на решение и этой проблемы в целом. К сожалению, в странах постсоветского пространства кроме выбросов автотранспорта наблюдается усиленное загрязнение экосистем отходами промышленных предприятий, работающих на старых устаревших как морально, так и физически технологиях. В связи с этим появляются участки локального антропогенного загрязнения агроэкосистем вблизи развитых промышленных центров, что усложняет производство экологически чистой продукции, особенно молока.

Ограниченное количество финансо-

вых ресурсов не позволяет в ближайшее время осуществить быструю модернизацию производства. Поэтому все более актуальными являются вопросы изучения миграции тяжелых металлов в системе почва \rightarrow растение \rightarrow организм животного \rightarrow продукция животноводства \rightarrow организм человека [1-8].

Цель работы. Изучить миграцию кадмия, свинца, меди и цинка из рациона дойных коров в молоко, разработать технологические способы противодействия негативного влияния этих токсикантов.

Материал и методика исследований. Опыты были проведены в 2000-2007 гг. в четырех хозяйствах Лубенского района Полтавской области: СООО «Удай», СООО «Свитанок», СПК «Хорошковский», ССП «Дружба». Для проведения опытов в каждом из хозяйств было отобрано по три группы животных. Первая - контрольная группа, вторая и третья опытные. Всем животным скармливались корма с превы-

шением ПДК по тяжелым металлам Cd, Pb, Cu, Zn. Второй группе дополнительно к кормам основного рациона скармливался специально разработанный антитоксический минерально-витаминный премикс «МП-А», а в третьей — кроме премикса дополнительно вводили подкожную инъекцию биологически-активного препарата «БП-9». Животных отбирали методом пар-аналогов по продуктивности (14 л среднесуточный удой), лактации (4-я), живой массе (500-545 кг).

Анализ средних проб кормов и биологических жидкостей на содержание тяжелых металлов осуществлялся методом атомно-абсорбционной спектрофотометрии и полярографии в ИЖ УААН и Лубенской РайСЭС. Премикс и биологически-активный препарат разработаны по методике [9].

Результаты исследований и их обсуждение. Подвижные формы тяжелых металлов Cd, Pb, Cu, Zn в почве всех подопытных хозяйств значительно превышали предельно допустимую концентрацию (ПДК). Важным является и тот факт, что содержание тяжелых металлов в исследуемых образцах почвы уменьшается с увеличением расстояния от источника загрязнения, то есть миграция тяжелых металлов происходит согласно закономерностям распространения их в горизонтальном профиле. Мы наблюдали несколько иную экологическую ситуацию относительно картографии локального загрязнения окружающей природной среды тяжелыми металлами вокруг промышленного центра и их влияние на агроэкосистемы подопытных хозяйств. В частности, в СООО «Свитанок», которое находится в направлении господствующих ветров, загрязняющие атмосферу вещества распространились на расстояние больше 21 км, где находятся сельхозугодия хозяйства, осели на поверхность почвы и вместе с осадками мигрировали в слой почвы, чем вызвали накопление подвижных форм тяжелых металлов в концентрации, превышающие ПДК в 3-8,6 раза по кадмию, в 4-9 раза по свинцу, в 2,6-4,7 раза по меди, в 1,7-2,1 раза по цинку. Это представляет опасность для сельскохозяйственных растений, корневая система которых находится в верхнем пахотном слое почвы, то есть на глубине 20-25 см, откуда нами отбирались пробы почвы для лабораторного анализа. На агроэкосистемы ССП «Дружба» кроме выбросов в атмосферный воздух промышленных предприятий негативно влияют выбросы АГНКС, так как угодья хозяйства расположены на расстоянии 3 км от станции. Это вызвало неравномерность загрязнения почвы. По мере отдаления от города на расстояние от 3 до 18 км наблюдалось постепенное уменьшение содержания всех ксенобиотиков, а на расстояние 21 км в противоположную сторону размещения угодий (противоположную от промышленного центра) наблюдалось постепенное увеличение содержания токсикантов в почве. Превышение ПДК в среднем составляло по кадмию в 4,8-8,3 раза, свинцу – 4,9-8,89 раза, меди – 3,3-4,5 раза, цинка – 1,8-2 раза. В других двух хозяйствах СООО «Удай» и СПК «Хорошковский» наблюдалась похожая ситуация. На расстоянии 21 км от источника загрязнения содержание тяжелых металлов в почве постепенно снижалось, а на расстоянии 25 км стало увеличиваться и до расстояния 45 км, где находятся сельхозугодия СПК «Хорошковский». На усиление аккумуляции ксенобиотиков в почве повлияло размещение этих хозяйств вблизи газоконденсатной станции. Превышение ПДК ксенобиотиков в почве обоих хозяйств в среднем становило: по Cd – в 3,6-7,3 и 3,9-9 раза, по Pb – в 4,7-8,2 и 4,8-9 раза, Cu – 1,9-4 и 3,2-5 раза, Zn – 1,7-1,9 и 1,8-2 раза соответственно. Таким образом, достаточно опасными в отношении загрязнения окружающей природной среды являются АГНКС и газоконденсатные станции, выбросы которых повлияли на постепенное увеличение содержания тяжелых металлов в почве с.-х. угодий, что значительно усиливает экоцидное влияние выбросов предприятий промышленного центра исследуемого региона и соответственно экологическую опасность ведения молочных отраслей животноводства.

Проведенный нами анализ кормов, которые входили в состав основного рациона дойных коров, подтвердил высокую подвижность тяжелых металлов в почве. В таблице 1 приведены данные превышения ПДК для кормов, которые использовались в кормлении животных. Как видим, в таблице в рацион коров СООО «Удай» вошли корма, которые имеют наименьшее превышение ПДК, особенно по кадмию и свинцу. Это дало возможность сформировать рацион силосно-сенажноконцентратного типа без корнеплодов, так как содержание кадмия в них было самим высоким, с превышением ПДК в 2,8 раза. В состав рациона вошли корма в наибольшем количестве - это силос и сенаж с превышением ПДК 1,4-1,6 раза соответственно (наименее загрязненные корма). Среди концентрированных кормов наименьшим содержанием тяжелых металлов отличались горох и кукуруза, поэтому их ввели в состав рациона, зерно овса и ячменя имело превышение ПДК по всем 4-м исследуемым элементам. В рацион не включили солому пшеничную, так как, имея одинаковый уровень загрязнения с сеном люцерновым и злаковобобовым, кормовая эффективность ее для продуктивности животных значительно ниже сена.

Попадая с кормом в желудочнокишечный тракт, Cd, Pb, Cu, Zn всасываются в кровь и аккумулируются в различных органах и системах организма. В начале опыта мы наблюдали повышенное содержание исследуемых тяжелых металлов в сыворотке крови по кадмию у коров ССП «Дружба» во всех 3-х подопытных группах. Превышение пределов физиологической нормы составляло в среднем в 1,8 раза, свинца – в 3,4; меди 1,4 и цинка – 1,1 раза соответственно. В СПК «Хорошковский» ситуация была похожей. Содержание Cd в среднем превышало норму в 1,7 раза, Pb - 2,7; Cu -1,4 соответственно, а пре-вышение по Zn было незначительным — приблизительно на 0,2%. Наименьшим было превышение физиологической нормы тяжелых металлов в крови коров СООО «Свитанок» и «Удай», где содержание Cd было в 1,6 раза выше, Pb — 2,3; Cu — 1,3; Zn — 1,1 раза, а в СООО «Удай» — Cd — 1,4; Pb — 1,9; Cu — 1,2 и Zn — 1,2 раза соответственно.

Ксенобиотики существенно влияют на живую материю, проявляя высокую биологическую активность. Но наши знания о последствиях такого влияния достаточно ограничены и недостаточны для того, чтобы обеспечить оптимальное существование человека.

Буквально все процессы, которые происходят в клетке обуславливаются специфическими свойствами ее мембранных образований. Мембранные структуры играют важную роль в обмене веществ как между клеткой и средой, так и между внутриклеточными компартаментами. Через внешние плазматические мембраны происходит выведение всех продуктов распада, а также влияние различных экзогенных и эндогенных факторов, в т.ч. ксенобиотиков. Первичной мишенью взаимодействия химического агента с клеткой является плазматическая мембрана. Самый большой интерес с точки зрения биологического ответа при взаимодействии ксенобиотиков с мембранами и их влияние на живые системы представляет такое явление, как антагонизм (ослабление биологического эффекта при общем действии в сравнении с влиянием отдельных агентов), хотя существует еще синергизм и адаптивность. Механизмы, которые находятся в основе антагонизма, могут быть самыми разнообразными. Находясь в окружающей природной среде, ксенобиотики взаимодействуют с различными организмами (микроорганизмы, растения, животные, человек) и в конечном итоге по трофической цепи попадают в организм продуктивного животного или человека. Изучая именно механизм антагонизма, нами был разработан специальный минерально-

	Превышение ПДК тяжелых металлов, раз															
Вид корма	тип кормления															
	силосно-сенажно-				силосно-сенажный				силосно-сенной №3				СИЛОСНО-			
	концентратный №1				Nº2								корнеплодный №4			
	Cd	Pb	Cu	Zn	Cd	Pb	Cu	Zn	Cd	Pb	Cu	Zn	Cd	Pb	Cu	Zn
Силос кук.	1,4	2,1	1,5	2,9	1,6	2,5	1,6	4,1	1,3	1,8	1,9	1,7	2,3	2,7	1,4	1,2
Сенаж люц.	1,6	2,8	1,8	4,7	1,8	3,1	1,9	4,5	1,5	1,9	2,0	1,9	2,5	3,2	1,8	1,6
Дерть кук.	1,8	3,7	2,3	5,7	2,9	4,9	3,8	7,1	2,5	3,8	3,3	4,4	3,2	4,1	2,3	1,7
Дерть горох.	2,1	4,1	2,6	6,1	2,6	4,7	2,7	6,3	2,8	3,9	2,9	3,8	-	-	-	-
Сено люцерн.	2,3	3,3	2,1	5,2	2,1	3,3	2,2	4,7	1,9	2,2	2,4	2,3	-	-	-	-
Сено злбоб.	2,5	7,3	5,1	7,8	2,2	3,7	3,9	2,6	-	-	-	-	3,2	5,7	2,2	1,9
Солома пш.	2,7	6,2	5,5	6,2	2,5	3,6	3,4	5,2	1,7	2,5	1,8	1,6	2,4	2,7	2,1	2,4
Свекла корм.	2,8	3,9	4,2	5,4	2,9	4,2	3,6	6,3	2,5	3,4	3,8	4,1	2,1	2,4	1,6	1,4
Дерть ячм.	2,2	4,7	2,7	6,4	2,8	5,2	3,8	4,2	1,8	2,3	1,5	2,9	3,4	5,2	3,4	2,8
Дерть овсяная.	2,4	4,4	3,2	6,7	2,5	4,6	3,4	6,8	2,3	5,2	3,1	3,5	3,6	6,8	3,9	2,3

№1 – COOO «Удай»; №2 – COOO «Свитанок»; №3 – СПК «Хорошковский»; №4 – «Дружба»

витаминный премикс «МП-А», который скармливался животным 2 и 3-й опытных групп коров и биологически активный фитобиопрепарат на основе 9-и лекарственных растений «БП-9», подкожная инъекция вводилась животным 3-х опытных групп.

Ксенобиотик, который попал в организм, чаще всего подвергается различным метаболическим превращениям с дальнейшим выведением.

Основные пути поступления ксенобиотиков в организм животного и человека преимущественно через желудочнокишечный тракт, органы дыхания и кожу. По различным оценкам, до 70% тяжелых металлов организм человека и животного получает с пищей (кормом), 20% — из воздуха, 10% — с водой. Для аграрного производства и в частности производства молока наиболее распространенным является путь проникновения ксенобиотиков через слизистую оболочку желудочнокишечного тракта вследствие поедания животными загрязненных кормов.

Проникая через мембраны в кровеносно-сосудистую систему, ксенобиотик дальше попадает в молоко (табл. 2), различные ткани и органы (печень, почки и т.д.). Участок всасывания — сли-

зистая оболочка желудка, тонкого и толстого отдела кишечника. Сила всасывания определяется физико-химическими свойствами ксенобиотика, его свойством к ионизации, взаимодействием с эпителиоцитами и т.д. Механизм всасывания тяжелых металлов сегодня изучается многими учеными [10-23]. Транспорт тяжелых металлов в организме в основном осуществляется при помощи специфического белка металтионеина, который присутствует в слизистой оболочке желудка.

Миграция тяжелых металлов из кормов в молоко происходит мгновенно. Молоко коров первых контрольных групп, как в начале, так и в конце опыта (табл. 2) не соответствовало действующему в Украине стандарту ДСТУ 3662-97. Однако применение в кормлении животных 2-х и 3-х опытных групп специального антитоксического премикса «МП-А», который содержит элементы антагонисты тяжелых металлов (кобальт, серу, йод, магний, марганец, селен, метионин, как донатор сульфгидрильных групп), способствовало меньшему всасыванию токсикантов в желудочно-кишечном тракте и большему выведению их из организма коров с калом и мочой, меньше с молоком (табл. 2). При помощи инъекции биопрепарата «БП-9»

Таблица 2.

Норма 🔟

±0,001 ±0,011 0,014 0,032 0,35 ±0,07 3,87 ±0,01 <u>≡</u> B*** B *** 13 не соотв. ЕС «Удай» 0,331 ±0,041 0000 0,024 ±0,001 HB, HI 0,34 ±0,06 *** B <u>П</u> 4,97 둗 12 1,794 ±0,052 0,053 ±0,001 HB, HI HB, HI 2,63 ±0,02 HB.HI ±0,03 8,74 FOH. Химические показатели качества молока подопытных коров в конце опытного периода, М±т, n=5. 7 ±0,014 Ш оп. ±0,004 0,014 0,27 ±0,08 0,012 3,51 ±0,06 9 соотв. ЕС ±0,015 ±0,002 0,016 4,02 ±0,03 0,017 0,28 ±0,07 <u>|</u> တ «Свитанок» 000 00,00∓ ±0,042 HB, HI HB, HI 0,068 1,734 HB, HI 7,93 ±0,05 2,36 ±0,01 KOH. Исследуемые тяжелые металлы Группы подопытных коров ±0,014 ±0,001 0,011 ±0,04 <u></u> ⊟ 0,027 8 *** #** B 4,17 не соотв. ЕС ±0,076 «Хорошковский» ±0,001 HB, HI 0,515 HB, HI 0,57 ±0,02 ***B 6,14 ±0,04 0,031 <u>|</u> ** ** ±0,032 HB, HI HB, HI ±0,001 HB.HI 1,641 2,54 ±0,01 9,93 KOH. 2 соотв. ЕС 0,018 ±0,003 0,014 ±0,011 ±0,04 *** B*** <u>≡</u> 0,29 4,32 4 «Дружба» ±0,004 *** ±0,032 HB, HI 0,614 0,00∓ HB, HI 6,01 ±0,03 0,031 ***B 5 0,31 <u>П</u> не соотв. ЕС ±0,002 ±0,057 HB, HI HB, HП HB, HI 1,835 ±0,08 0,087 7,06 FOH. 2,47 \sim Cd, Mr/Kr РЬ, мг/кг Cu, Mr/Kr Токаза-Тель

питание

(0,05)

S

(0,02)0,26-

0,35 до

3-5

±0,02

±0,02

**

0,0€

±0,07

±0,09 HB, HI

Zn, Mr/kr

HB, HI

В

മ

1/нег

1/нег.

മ

1/нег.

2/нег.

1/нег.

1/нег.

മ

1/нег.

2/нег.

Сорт

HB, HI

детское

питание

(0,02)

0,1

цетское

0,03

4

ства молокопродуктов детского питания; ^{п1} – физиологическая норма здорового животного, ПДК и норма согласно ДСТУ 3662-97; 2/ **Примечание:** №0,999***, НВ – не соответствует стандарту, В – соответствует стандарту, НП – непригодное для производнее, 1/нее. – 1,2 – сорт по качественным показателям, нее. – не соответствует стандарту по содержанию тяжелых металлов.

Состав препарата «БП-9»

Nº п/п	Экстракт	Содержится в 100 мл препарата
1	Лимонник китайский (Schizandra chinensis(turcz) baill).	15мл
2	Ромашка лекарственная (аптечная) (Chamomilla recutita).	3мл
3	Элеутерокок колючий (Eleutherococcus senticosus (Acanthopanax senticosus)).	15мл
4	Шалфей лекарственный (аптечный) (Salvia officinalis).	17мл
5	Барбарис обычный (Berberis vulgaris).	12мл
6	Люцерна посевная (Medicago sativa).	5мл
7	Почечный чай (Orthosiphon stamineus).	15мл
8	Облепиха крушиновидная (Hyppophae rhamnoides).	15мл
9	Вербена лекарственная (Verbena officinalis).	3мл

коровам 3-х опытных групп нам удалось усилить процесс элиминации инкорпорированных поллютантов. Поэтому в конце опыта нам удалось получить наиболее качественное и экологически безопасное молоко именно от животных 3-х опытных групп в сравнении со 2-ми группами и особенно с первыми контрольными группами (р≥0,999). Состав биопрепарата «БП-9» приведен в таблице 3.

Выводы. Экологическим мониторингом установлены локальные участки загрязнения агроэкосистем тяжелыми металлами. Превышение ПДК подвижных форм Cd, Pb, Cu, Zn в почве вызвало усиленную миграцию поллютантов в растения (в корма для животных). Cd, Pb, Cu, Zn способны аккумулироваться в растениях в концентрациях, значительно превышающих ПДК. Скармливание таких кормов дойным коровам в составе рациона приводит к всасыванию этих элементов в кровь в количестве, превышающем пределы физиологической нормы организма животного, из крови они мигрируют в продукцию (молоко), которое в контрольных группах не соответствовало отечественным и международным стандартам качества. Тогда как применение специально разработанных антидотных веществ (премикса «МП-А» и биопрепарата «БП-9») способствовало блокированию всасывания тяжелых металлов в желудочно-кишечном тракте, тем самым уменьшая поступление последних в молоко.

Усовершенствование технологии производства коровьего молока с использованием в кормлении коров специальных антитоксических премиксов типа «МП-А» в комплексе с подкожной инъекцией фитобиопрепарата «БП-9» дает возможность производить экологически чистое, безопасное молоко высокого качества.

Литература:

- 1. Засєкін Д.А., Захаренко М.О., Свинаренко О.І. Шляхи одержання екологічно чистої тваринницької продукції в регіонах України з високим рівнем важких металів у довкіллі // Збірник наукових праць Вінницького державного аграрного університету. Сучасні проблеми екології та гігієни виробництва продуктів тваринництва. Вип. 8- Т-1 2000.- С. 61.
- 2. Засєкін Д.А. Вміст важких металів у м'ясі та субпродуктах корівз екологічно різних господарств України // Науковий вісник НАУ. 2000. Вип. 24. С. 25-28.
- 3. Засєкін Д.А. Рівень міді, цинку, свинцю, кадмію та стронцію в м'ясі та субпродуктах корів з екологічно різних господарств // Актуальные проблемы токсикологии. Тезисы докл. науч. конф. К. С. 96-97.
- 4. Буцяк В.І. Трансформація важких металів із корму в молоко на тлі дії цеоліту // Вісник Сумського національного аграрного університету. 2002. Випуск

- 6. C. 585-588.
- 5. Кравців Р.Й., Буцяк В.І. Трансформація важких металів ґрунтами за умов техногенного навантаження // Сільський господар. 2002. №1-2. С.5-8.
- 6. Кравців Р.Й., Буцяк В.І. Вплив антропогенного фактору на вміст важких металів у кормових культурах // Біологія тварин. 2002. Т.4, №1-2. С. 189-192.
- 7. Буцяк В.І. Кумуляція важких металів кормовими культурами у локальних зонах антропогенного забруднення// Науковий вісник Львівської державної ака-демії ветеринарної медицини імені С.З.Гжицького. 2002.- Т.4(№2), ч.5.- С.21-26.
- 8. Маменко О.М., Портянник С.В. Перспективи молочної галузі з урахуванням уникнення екологічних ризиків та необхідності поліпшення якості молока. // Зб.наук пр. «Підвищення продуктивності с.-г. тварин» (Increase of farm animal productivity), т. 18, Харків, ХДЗВА-2007, -с. 117-135.
- 9. Маменко А.М., Портянник С.В. Вплив мікроелементного складу кормів та вмісту в раціоні важких металів на якість виробленого поблизу промислових центрів молока // Збірник наукових праць Вінницького державного аграрного університету Випуск 34, Т.2. 2008. 10-19.
- 10. Авцын А.П., Строчкова Л.С. Микроэлементы человека. М.: Медицина, 1991.

- 11. Уразаев Н.А., Никитин В.Я., Кабыш А.А., и др. Эндемические болезни сельскохозяйственных животных. М.: Агропромиздат, 1990. 271 с.
- 15. Ахмадеев А.Н., Колесников И.М., В.Ф. Лысов и др. Ветеринарная экология / под ред. Уразаева Д.Н. и Трухачева В.И. М.: Колос, 2002. 240 с.
- 16. Скуковский Б.А. Микроэлементы в крови животных. Физиология и биохимия сельскохозяйственных животных. Новосибирск, 1987:71-80.
- 17.Михалева Л.М.Кадмийзависимая патология человека // Архив патологии. М., 1988. №9. С. 83.
- 18. Cadmium and health /Eds: L. Friberg, C.-G. Elindder, T. Kiellstrom,
- G.F. Nordberg. Boca Raton: CRC Press, 1986. 305p.
- 19. Handbook on the toxicology of metals / Eds.: L. Friberg, G.F. Nordberg, V.B. Vouk. Amsterdam: Elsevier, 1986. 215 p.
- 20. Friberg L. // International congress on Industrial Medicine, 9th; Proceedings. Bristol, 1949. P. 641-644.
- 21. Friberg L. // Acta med. scand. 1950. Vol. 138. P. 124.
- 22. Михалева Л.М., Черняев А.П. Патоморфологическая характеристика экспериментальной кадмиевой интоксикации // Микроэлементозы человека. М., 1989. С. 194-195.
- 23. Van Bruwaene R., Kirchmann R., Impens R. Cadmium contamination in agricultural and zootechnology // Experientia. 1984. Vol. 40. P. 43-52.