кормлении откармливаемого молодняка свиней не оказывало заметного влияния на перевариваемость питательных веществ кормов. Коэффициент перевариваемости «сырого» протеина колебался в пределах 75,7-76,0%, «сырого» жира — 59,5-60,5%, «сырой» клетчатки — 42,1-40,3%.

Анализ крови боровков не выявил влияния изучаемого фактора на гематологические показатели, и полученные результаты укладывались в физиологические нормы. Концентрация эритроцитов была 6,73-6,78 10^{12} /л, лейкоцитов — 17,34-19,33 10^{9} /л, гемоглобина — 101-103,3 г/л, общего белка в сыворотке — 72-73 г/л.

Следовательно, по результатам исследований можно заключить, что использование в составе рациона белково-витаминноминерального концентрата с содержанием 2% фруктозы по массе повышает поедаемость кормов и тем самым усиливает энер-

гию роста откармливаемого молодняка свиней.

Библиографический список

- 1. Нормы рационов кормления сельскохозяйственных животных. Справочной пособие, 3-е издание перераб. и доп. /под ред. А.П. Калашникова, Фисинина В.И., Щеглова В.В. Клейменов Н.И.// М.:, 2003. С. 176-178;182-191.
- 2. Комбикорма и кормовые добавки и ЗЦМ для животных. Справочник/ В.А.Крохина, А.П.Калашников, В.И. Фисинин и др; Под ред. В.А Крохиной // -М.: Агропромиздат, 1990.-С.-158-176.
- 3. Петрухин, И.В. Корма и кормовые добавки/ И.В. Петрухин// М.: Росагропромиздат, 1989. С. 455-460.
- 4. Овсянников, А.И. Основы опытного дела в животноводстве / А.И. Овсянников // М.: Колос, 1976. —С.43-51.

УДК 636.085.636.084.636.2

МОЛОЧНАЯ ПРОДУКТИВНОСТЬ КОРОВ В ЗАВИСИМОСТИ ОТ ГЕНОТИПА, УРОВНЯ КОРМЛЕНИЯ И ТЕХНОЛОГИЙ СОДЕРЖАНИЯ

Хайсанов Дмитрий Петрович, доктор сельскохозяйственных наук, профессор кафедры «Биотехнология и переработка сельскохозяйственной продукции» ФГБОУ ВПО «Ульяновская государственная сельскохозяйственная академия».

432063, г. Ульяновск, бульвар Новый Венец, 1. Тел.: 8(8422)44-30-68 e-mail:biotech-dep@mail.ru

Ключевые слова: генотип, уровень кормления, молочный жир, удой, технология содержания.

Приводятся данные экспериментальных исследований, доказывающие, что животные с генотипом голштинской породы при полноценном кормлении по продуктивности и уровню перевариваемости питательных веществ превосходят сверстниц районированной популяции коров бестужевской породы.

В молочном скотоводстве, как в наиболее рентабельной отрасли животноводства для многих географических районов России, главная роль отводится увеличению продуктивности коров за счет не только улучшения селекционной работы, но и совершенствования технологии их кормления (1; 2).

Цель исследования - выяснить про-

дуктивную отзывчивость коров бестужевской и голштинской пород и их помесей на разные уровни кормления в условиях беспривязного содержания.

В условиях ограниченного кормления потенциал продуктивности у коров бестужевской породы проявляется на 295 кг молока и на 13,44 кг молочного жира выше, чем

Таблица 2

Молочная продуктивность коров разных генотипов

Показатели	Уровень кормления и порода					
	низкий		средний		высокий	
	(3000 корм.ед.)		(5000корм. Ед.)		(7000 корм.ед.)	
	бестужев- голштин-		бестужев-	голштин-	бестужев-	голштин-
	ская	ская	ская	ская	ская	ская
Удой, кг	2280	1985	3720	5253	5180	7380
% жира	3,68	3,55	3,78	3,68	3,89	3,62
молочного жира, кг	83,90	70,46	140,6	193,3	201,5	267,2

у голштинской породы (табл. 1). В условиях более интенсивного кормления (средний и высокий уровень) уже коровы голштинской породы по отношению к бестужевской увеличивают проявление своего потенциала продуктивности соответственно на 1533 и 2200 кг молока и на 52,7 и 65,65 кг молочного жира. У коров же бестужевской породы, с увеличением уровня кормления, при менее значительном темпе нарастания продуктивности (в 1,63-2,27 раза против 2,65-3,72 раза у голштинов), проявляются различные забо-

левания печени, конечностей, бесплодие и другие болезни.

У коров с генотипом голштинской породы в ответ на повышение уровня кормления, так же, как у чистопородных голштинов, отмечается высокая степень проявления потенциала молочной продуктивности. При этом необходимо отметить, что высокую молочную продуктивность помесные животные проявляют уже с первой лактации, и с увеличением возраста коров в лактациях и их кровности по голштину продуктивность

Молочная продуктивность голштинских помесей

молочная продуктивность голштинских помесеи								
	Уровень годового потребления кормов							
Генотип живот-	средний		высокий					
ных	удой,	0/ 1///20	молочного	V-08 V-	0/ 1/4/20	молочного		
	КГ	% жира	жира, кг	удой кг	% жира	жира, кг		
I лактация (n-120)								
1/2Б+1/2Г	4899	3,82	187,14	5130±223,4	3,29±0,06	168,8		
1/4Б+3/4Г	5487	3,64	199,72	5700±166,6	3,57±0,05	203,5		
1/8Б+7/8Г	5594	3,90	206,42	6110±119,6	3,48±0,03	212,6		
1/16Б+15/16Г	-	-	-	6180±236,6	3,43±0,07	212,0		
ч/п Г	-	-	-	6147±383,2	3,56±0,16	218,8		
	II лактация (n-120)							
1/2Б+1/2Г	4752	3,89	184,8	5975±321,1	3,37±0,07	201,4		
1/4Б+3/4Г	5479	3,75	205,5	6390±225,6	3,49±0,05	223,0		
1/8Б+7/8Г	5966	3,76	224,3	6190±142,3	3,53±0,04	218,5		
1/16Б+15/16Г	-	-	-	5920±361,1	3,51±0,08	207,8		
ч/п Г	-	-	-	6083±653,7	3,63±0,18			
III лактация и старше (n-120)								
1/2Б+1/2Г	5495	3,61	198,4	5710±294,8	3,52±0,05	201,0		
1/4Б+3/4Г	5831	3,77	219,9	6120±187,7	3,48±0,03	213,0		
1/8Б+7/8Г	6206	3,73	231,5	7348±134,6	3,46±0,04	254,2		
1/16Б+15/16Г	_	-	-	5327±369,7	3,31±0,07	176,3		
ч/п Г	-	-	-	5560±628,6	3,34±0,17	185,7		

Таблица 3 Продуктивность коров при различной технологии их содержания

/ 205	, v	•	••	1
120 7115	MUPII	а спедием	по тпем	лактациям)
Ju 303	UTICA	o cpconcin	110 HIPCINI	nammagammi

	Технология содержания					+Традиционная тех-		
Порода и кров-	промышленная			традиционная стойловопривязочная			нология к промыш-	
ность по голшти-	беспривязная		ленной					
ну	n	удой,	молочн.	n	удой,	молочн.	молока,	молочн.
	11	кг	жира, кг	жира <i>,</i> кг п	КГ	жира, кг	КГ	жира, кг
Бестужевская	38	3602	138,3	38	3647	138,9	+45	+0,6
1/2	36	4399	163,6	34	4665	174,5	+266	+10,9
3/4	37	4267	157,4	36	4824	177,5	+557	+20,1
7/8	33	4568	168,1	32	5002	182,1	+434	+14,0
15/16	33	4659	174,2	32	5057	185,6	+398	+11,4

увеличивается (табл.2). Она достигает максимальной величины у 7/8 кровности коров III лактации в пределах 6206 кг с жирностью 3,73% при умеренном уровне кормления и 7348 кг с жирностью 3,46% при высоком годовом уровне потребления кормов. У коров 15/16 кровности и чистопородных уровень молочной продуктивности и выходы молочного жира по I и II лактации почти такой же, как и у коров 7/8 кровности, а уже по III лактации и старше показатели их продуктивности существенно ниже (Р <0,05), чем у 7/8 кровных пород.

Обращает на себя внимание не только

высокий уровень продуктивности по первой лактации, но и то, что темп увеличения молочной продуктивности коров, в связи с нарастанием их кровности по голштину, проявляется в большей мере, чем в связи с увеличением их возраста в лактациях, тогда как коровы первой и старше лактаций, с 7/8 кровностью по голштину, имеют относительно одинаковый уровень продуктивности. Эти данные говорят о скороспелости скота с генотипом голштинов и о том, что при голштинизации скрещивание надо вести до получения помесей ІІІ поколения — с 7/8 его кровности. Повышение кровности

Таблица 4 Химический состав и технологические свойства молока коров

	Бестужевская	Генотип животных по голштинской			
Показатели	·	породе			
	порода	1/2Б×1/2Г	1/4Б×3/4Г	1/8Б×7/8Г	
Удой, кг	3620	4487	4557	5720	
Содержание жира в молоке, %	3,69	3,93	3,82	3,85	
Содержание белка в молоке, %	3,38	3,54	3,51	3,48	
в том числе:					
альбумины+глобулины, %	0,78	0,69	0,79	0,76	
казеин, %	2,60	2,85	2,72	2,65	
в т.ч. –казеин, %	33,8	34,02	34,90	35,0	
-казеин, %	55,0	52,74	52,27	51,7	
-казеин, %	11,2	13,24	12,83	13,3	
Величина жировых шариков, мк	3,52	2,80	2,70	3,20	
Продолжительность сбивания сливок,					
мин	73	72	73	64	
Содержание жира в пахте, %	0,72	0,70	0,80	0,60	
Степень использования жира, %	97,3	98,4	98,3	98,7	

сверх 7/8 не только не увеличивает молочную продуктивность коров, а сокращает их продуктивное долголетие.

Выясняя в течение трех смежных лактаций изменчивость молочной продуктивности у помесных и бестужевских коров, как ответную реакцию их генотипа на условия традиционно привязной и промышленной беспривязной технологии содержания на одинаковых по типу и уровню кормления рационах, мы установили, что при промышленной технологии содержания продуктивность животных всех генотипов ниже (табл.3).

При этом большую устойчивость к беспривязному содержанию показали коровы бестужевской породы. За 305 дней в среднем по трём лактациям они снизили надой только на 45 кг, а выход молочного жира на 0,6 кг, тогда как животные с генотипом голштинской породы — на 266 - 557 кг молока и на 10,9 - 20,1 кг молочного жира.

С повышением у коров доли генотипа голштинской породы уровень снижения молочной продуктивности возрастает. В целом же, независимо от технологии содержания, помесные животные по отношению к бестужевским продуцировали больше молока и молочного жира: при содержании на промышленной ферме на 665-966 кг молока и 19,1-29,8 кг молочного жира и соответственно на 1018-1355 и 35,6-43,2 кг на традиционной ферме.

В специальных опытах изучалось влияние кровности помесей на технологические свойства молока, состав молочного жира и

белка. В одинаковых условиях содержания четыре аналогичные группы коров кормили, как и всех коров фермы, рационом, общая питательность которого равнялась 15,7 кормовых единиц и 1589 г перевариваемого протеина. Определение жира и белка в молоке проводили ежемесячно, а сбивание сливок — 2-кратно на лабораторном маслоизготовителе с соблюдением технологических условий. В молочном жире определяли его жирнокислый состав, а в белке — его фракционный состав. Установлено, что в молоке помесных коров повысилось содержание жира на 0,24 и 0,13% (табл.4).

Увеличилось содержание белка в молоке на 0,16-0,10. Увеличение произошло за счет повышения содержания казеина. Выход жира в молоке у бестужевских коров составил 133,6 и 176,3 кг, 174,0, 220,0 кг у помесных коров. Выход общего белка был выше у помесей и составил 158,8, 159,9, 199,0 кг против 122,3 кг у бестужевских чистопородных коров. Такой качественный состав молока характерен для так называемых «сырных пород» (симментальская швицкая, костромская), что придает большую значимость получаемой продукции. Во фракциях казеина, как и в жирнокислом составе молока, существенных различий не установлено. Непредельные жирные кислоты в жире молока составили в среднем 28,82-30,92%, а на долю летучих жирных кислот, обуславливающих аромат и вкус сливочного масла, приходилось от 9,3 до 10,38%.

Качественное улучшение стада по пригодности коров к машинному доению увели-

Переваримость питательных веществ рациона у коров, (%)

Hebesalesmoots instances sequence y nepos, (70)							
Питательные веще- ства	Генотип животных						
	Бестужевские чи- стопородные	1/2Б х 1/2Г	1/4Б х 3/4Г	1/8Б х 7/8Г			
Сухое вещество	70.70±1.20	73.80±2.20	72.10±0.75	74.15±1.40			
Органическое вещество	70.90±1.20	74.10±1.10	73.20±0.82	75.10±1.65			
Протеин	58.10±1.00	62.70±4.52	61.80±1.65	61.40±3.80			
Жир	78.65±2.40	79.80±0.40	79.70±4.35	81.20±4.15			
Клетчатка	56.30±2.50	58.30±3.00	58.40±1.48	58.80±2.80			
БЭВ	72.75±1.10	74.80±4.60	73.80±3.35	78.20±3.20			

чивается с нарастанием крови голштинской породы и достигает 2,46 кг/мин. Увеличивается индекс вымени до 45,70% у коров 7/8 крови по голштинской породе. В результате целенаправленной селекционной работы выращивание высококлассного ремонтного молодняка молочного типа, использование лучших сочетаний голштинских линий, применение инбридинга на ценных в племенном отношении родоначальников и продолжателей линий коров-рекордисток - создано высокопродуктивное стадо. О высоком генетическом потенциале продуктивности созданного стада можно судить и по показателям 368 коров, записанных в 96 том ГПК. Их продуктивность колеблется от 6722 кг до 7246 кг, а отдельные животные имеют удои значительно выше. Например, корова Кули УЛЧП 242 Ш-305-10142-4.37; 1У-305-8419-4.43; Кефирка УЛЧП 170 Ш-305-10069-3.87; 1У-305-9437-3.50; Айса УЛЧП 236 Ш-305-9458-4.00; 1У-305-8829-3.5 и др. Содержание жира в молоке коров, записанных в ГПК, выше стандарта породы на 0,26-0,49%. Исключительно высокую ценность имеют коровы, сочетающие обильномолочность с высокой жирностью, например, УЛЧП 242 (10142-4.37)6 УЛЧП 236 (9458-4.00), УЛЧП 147 (9527-4.03), УЛЧП 160 (8265-4.49). Способность давать высокие удои с высоким содержанием жира в молоке и удерживать их в течение нескольких лактаций подряд обусловлена не только наследственностью, но и исключительной крепостью животных, созданной направленной плановой селекционной работой.

Мы изучили перевариваемость питательных веществ у коров различных генотипов при одинаковых условиях кормления. Установлено, что помесные коровы лучше, чем бестужевские, переваривают сухое вещество на 1,9-3,95%, органическое – на 2,3-4,2, сырой протеин на 3,3-4,2, сырой жир на 1,05-2,55, сырую клетчатку – 2-2,5 и БЭВ – на 1,05-5,45% (табл. 5). При этом у сравниваемых генотипов коров наибольшие различия были в перевариваемости протеина, клетчатки и БЭВ, что и обусловило в целом лучшую перевариваемость органического вещества у голштинских помесей. Различий в перевариваемости питательных веществ между помесными коровами в зависимости от их кровности по голштину не обнаружено. Способность помесных животных лучше переваривать клетчатку как наиболее дешевый и доступный вид питательных веществ – очень ценное качество.

Таким образом, коровы с генотипом голштинской породы, при одинаковых условиях кормления и содержания, лучше, чем бестужевские, реализуют генетический потенциал продуктивности и перевариваемости питательных веществ. Влияние уровня кровности по голштину на степень перевариваемости всех групп питательных веществ у коров не проявлялся.

Библиографический список

- 1. Мохов Б.П. и др. (1994), Продуктивное долголетие голштинизированных коров // Опыт и проблемы зоотехнической науки: (сборник научных работ Ульяновского СХИ). Ульяновск, С. 147-151.
- 2. Катмаков П.С. и Гавриленко В.П. (1997), Использование голштинской породы в молочном скотоводстве Поволжья // Ульяновск, 250 С.