АГРОНОМИЯ И АГРОЗКОЛОГИЯ

УДК 633.11:631.8

ВЛИЯНИЕ РЕГУЛЯТОРОВ РОСТА НА ФОРМИРОВАНИЕ ЭЛЕМЕНТОВ СТРУКТУРЫ УРОЖАЙНОСТИ ЯРОВОЙ ПШЕНИЦЫ В УСЛОВИЯХ УЛЬЯНОВСКОЙ ОБЛАСТИ

Н.Н Андреев, кандидат сельскохозяйственных наук, доцент кафедры биологии, химии, ТХППР ФГБОУ ВПО «Ульяновская государственная сельскохозяйственная академия им. П.А. Столыпина» тел. 8-906-143-45-11, andreev919@yandex.ru

А.В Каспировский, аспирант кафедры биологии, химии, ТХППР ФГБОУ ВПО «Ульяновская государственная сельскохозяйственная академия им. П.А. Столыпина» тел. 8-908-470-95-71, andreikaspirovskij@yandex.ru

Ключевые слова: регуляторы роста, яровая пшеница, сохранность, структура урожайности, урожайность.

В ходе проведенных исследований установлено положительное действие регуляторов роста на формирование элементов структуры урожайности и сохранность яровой пшеницы.

Введение. Растения яровой пшеницы закладывают в течение вегетации генеративных органов больше, чем они могут реализовать в агробиоценозе. Такой принцип избыточности заложен в генетической основе растения и способствует большему развитию элементов продуктивности растения. Необходимо учитывать, что Ульяновская область относится к зоне рискованного земледелия, где погодно — климатические условия характеризуются низкой влагообеспеченностью и повышенными температурами.

Одним из факторов снижения данных рисков является использование регуляторов роста в технологии возделывания яровой пшеницы. Предпосевная обработка семян регуляторами роста способствует стимуляции ростовых процессов на ранних этапах, формированию мощной вегетативной сферы и повышению продуктивности яровой пшеницы.[1]

Положительное влияние регуляторов роста на продукционные процессы и урожайность зерновых культур отражено в исследованиях многих авторов.[2,3,4,5,6,7,8,9.]

Материалы и методы исследования. Цель работы — определить действие регуляторов роста на формирование элементов структуры урожайности яровой пшеницы. Для

достижение поставленной цели были проведены исследования в лабораторных и полевых условиях УГСХА им. П.А. Столыпина в 2010-2012 гг. Опытная культура- яровая пшеница сорта Землячка, методика закладки полевого опыта общепринятая для мелкоделяночных участков, повторность 4-х кратная, размещение вариантов в опыте рендомизированное, площадь делянок- 20 м². Перед посевом семена обрабатывались регуляторами ростакрезацин, энергия, альбит, гуми, циркон, экстрасол, в концетрациях рекомендованных производителем препаратов.

Почва опытного поля чернозем выщелоченный среднемощный среднесуглинистый со следующей агрохимической характеристикой: содержание гумуса 4,3% (почва среднегумусная), PH - 5,8 - 6,8 слабокислая), содержание подвижного фосфора и калия соответственно 107 - 142 и 103 - 135 мг/кг почвы (повышенное). Степень насыщенности основаниями составляет 96,4 - 97,9%. Сумма поглощенных оснований 25,5 - 27,8 мг - 96,4 - 100 почвы.

Метеорологические условия за годы исследования были различными по температурному режиму и режиму влагообеспеченности, что позволило всесторонне изучить действие используемых факторов. ГТК в 2010 году составил 0,2, в 2011 году — 1,3, в 2012 — 0,7. Вегетационный период в 2010 году — 88 дней, в 2011году и 2012 году — 103 дня.

Результаты исследований. В результате проведенных исследований было установлено, положительное влияние регуляторов роста на сохранность опытной культуры (табл.1). Наибольшая сохранность растений яровой пшеницы в фазу кущение- выход в трубку наблюдалась в варианте экстрасол, по сравнению с контрольным вариантом увеличение составило 11 - 16 шт/ m^2 , в фазу колошение- молочная спелость наилучшая сохранность в вариантах крезацин и энергия (на 10-13 шт/ m^2 выше контроля).

Используемые в опыте регуляторы роста позитивно влияют на формирование структуры урожайности яровой пшеницы (табл. 2).

Под действием регуляторов роста увеличивалась высота растений, количество продуктивных стеблей, длина колоса, количество зерен в колосе, масса 1000 семян. По сравнению с контрольным вариантом, максимальное значение данных показателей отмечалось в вариантах крезацин и энергия.

Таблица 1. Сохранность яровой пшеницы сорта Землячка, шт/м² (в среднем за 2010 – 2012гг)

Варианты	Кущение	Выход в трубку	Колошение	Молочная спелость
Контроль	308,22	285,97	259,99	235,27
Крезацин	320,34	294,01	269,87	248,95
Энергия	320,68	295,08	271,18	248,94
Альбит	320,24	293,59	268,94	248,13
Гуми	316,89	292,72	267,05	246,07
Циркон	320,66	294,82	269,27	249,20
Экстрасол	324,42	296,03	267,82	243,58

Предпосевная обработка семян регуляторами роста увеличивает урожайность

опытной культуры.

В среднем за годы исследований прибавка урожайности яровой пшеницы составила 0,10-0,34 т/га, в зависимости от варианта (табл.3). Наиболее эффективной является обработка препаратами крезацин и энергия.

Таблица 2. Структура урожайности яровой пшеницы сорта Землячка, (в среднем за 2010 – 2012 гг)

Варианты	высота растения, см	кол-во прод. стеблей,шт	длина колоса, см	кол-во зерен. в колосе, шт	масса зерна в колосе,г	масса 1000 семян, г
Контроль	72,87	1,30	8,77	23,90	1,08	32,57
Крезацин	75,22	1,37	9,66	25,39	1,14	33,59
Энергия	75,63	1,38	9,94	25,61	1,16	34,21
Альбит	73,74	1,34	8,97	24,71	1,10	33,07
Гуми	74,09	1,35	9,05	25,02	1,12	33,54
Циркон	75,29	1,36	9,43	25,19	1,13	34,18
Экстрасол	73,90	1,35	9,19	25,41	1,14	33,39

Таблица 3. Урожайность яровой пшеницы сорта Землячка, т/га

Вариант	2010 г	2011 г	2012 г	Средняя	Прибавка
Контроль	0,65	3,61	1,28	1,85	-
Крезацин	0,70	4,19	1,65	2,18	0,33
Энергия	0,65	4,21	1,70	2,19	0,34
Альбит	0,70	3,64	1,51	1,95	0,10
Гуми	0,65	3,73	1,56	1,98	0,13
Циркон	0,75	3,71	1,60	2,02	0,17
Экстрасол	0,70	3,80	1,49	2,00	0,15
HCP ₀₅	0,05	0,48	0,2	-	-

Заключение. Таким образом, используемые в опыте регуляторы роста положительно и эффективно действуют на сохранность и формирование структуры урожайности во все фазы роста и развития растений и, в конечном итоге, повышают урожайность яровой пшеницы.

Библиографический список:

- 1. Зюзина Е.Н. Стимулирующее действие бактериальных препаратов и регуляторов роста на формирование вегетативной сферы растений яровой пшеницы как фактор повышения урожайности // Известия ПГПУ. №5(9). 2007. С.33 35.
- 2. Андреев Н.Н., Каспировский А.В. Влияние регуляторов роста на продукционные процессы и урожайность яровой пшеницы сорта Землячка в условиях лесостепи Поволжья // Материалы Всероссийской научно- практической конференции. Ижевск. 2012. С.3 7.

- 3. Исайчев В.А., Андреев Н.Н., Каспировский А.В. Зависимость динамики макроэлементов в растениях яровой пшеницы от предпосевной обработки семян регуляторами роста // Вестник УГСХА. №1(21). 2013. С.14 19.
- 4. Исайчев В.А., Андреев Н.Н., Каспировский А.В. Влияние предпосевной обработки хелатными микроудобрениями и регуляторами роста на посевные качества семян гороха и яровой пшеницы // Нива Поволжья. №1(26). 2013. С.16 19.
- 5. Исайчев В.А., Климова Н.В. Влияние пектина и микроэлементов на эффективность производства озимой пшеницы // Аграрная наука. №5. 2005. C15.
- 6. Исайчев В.А., Андреев Н.Н., Мударисов Ф.А. Кормовая и технологическая ценность зерна пшеницы и семян гороха // Вестник УГСХА. №2.(18). 2012. C.24 28
- 7. Исайчев В.А., Дозоров А.В. Влияние хелатов и пектиновых веществ на посевные качества семян. // Международный сельскохозяйственный журнал. №5. 1998. С.57
- 8. Исайчев В.А., Дозоров А.В. Влияние предпосевной обработки семян микроэлементами **на динамику азота в растениях яровой пшеницы и сои. // Междуна**родный сельскохозяйственный журнал. №4. 1999. С.53
- 9. Исайчев В.А., Дозоров А.В. Андреев Н.Н. Влияние предпосевной обработки семян пектином и микроэлементами на качество урожая озимой пшеницы, гороха и сои. // Зерновое хозяйство. №1(4). 2001. С.31 33.

FLUENCE ON FORMATION ROSTREGULYATOROV ELEMENT OF THE STRUCTURE YIELD OF SPRING WHEAT UNDER THE ULYANOVSK REGION

Andreev N.N., Kaspirovsky A.V.

Keywords: growth regulators, spring wheat, safety, yield structure, productivity.

In the course of the studies found a positive effect of growth regulators on the formation of the structural elements of productivity and safety of spring wheat.

УДК 631.524:633.3

СВЕРБИГА ВОСТОЧНАЯ – ИСТОЧНИК ПОЛУЧЕНИЯ ВЫСОКОБЕЛКОВОЙ ЗЕЛЕНОЙ МАССЫ В РАННИЕ СРОКИ

В.Г. Власов, кандидат сельскохозяйственных наук ГНУ Ульяновский НИИСХ Россельхозакадемии тел. (84254) 34-4-66, <u>vlasval11@rambler.ru</u>

Ключевые слова: свербига восточная, подпокровный посев, зеленая масса, кормовые единицы, агроэнергетическая оценка.

Описаны результаты исследований, в которых изучали влияние видов и способов посева, норм высева, приемов борьбы с сорняками, сроков уборки на продуктивность посевов свербиги восточной. Установлено, что наиболее эффективно культуру высевать под покров озимой ржи на зеленый корм обычным рядовым способом с нормой