Количество передач:	
- шарнирных (карданных)	-
- цепных	3
- ременных	1
- редукторов	-

Результаты, занесенные в таблицу, позволяют оценить технические возможности пневматической зерновой сеялки. На основании представленных в таблице данных можно рассчитать норму выработки предлагаемой сеялки за посевную компанию при условии выполнения агротехнических требований.

Библиографический список:

- 1. Курдюмов В.И. Энергосберегающее средство механизации для стерневого посева / В.И. Курдюмов, В.В. Курушин Сельский механизатор 2011. № 2. С. 5 6.
- 2. Корчагин В.А. Почвозащитные и влагосберегающие технологии возделывания яровых зерновых культур в черноземной степи Среднего Заволжья / Корчагин В.А., Горянин О.И. // Аграрный вестник Юго Востока: 2009, № 2. С. 43 44.
- 3. Патент RU 90961. Сеялка / В.И. Курдюмов, Е.С. Зыкин, В.В Курушин; Опубл. 27.01.2010 г. Бюл. № 3.

TECHNICAL CHARACTERISTICS OF THE GRAIN SEEDER

Kurdyumov V.I., Kurushin V.V.

Keywords: sterneyy crops, seeder, technical characteristics, working bodies.

The main features of a design of a grain seeder which allow to carry out crops of grain crops on a sternevy background are stated. The main technical characteristics of an offered seeder are presented.

УДК 664.08

ПРОИЗВОДСТВЕННАЯ ПРОВЕРКА УСТАНОВКИ ДЛЯ ПРИГОТОВЛЕНИЯ СЛИВОЧНОГО МАСЛА

С.А. Лазуткина, кандидат технических наук, ассистент ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина»

Ключевые слова: маслоизготовитель, акустический динамик, сливки, масло.

В статье рассматриваются результаты производственных исследований установки для приготовления сливочного масла.

На основании анализа конструкций маслоизготовителей, был предложен способ и устройство для приготовления сливочного масла, основанный на воздействии низко-

частотных акустических колебаний, как на емкость, так и непосредственно на жировые шарики.

Способ осуществляется следующим образом. В емкости 3 заливают сливки, после чего произвольно (в том числе под углом к основанию) их располагают на платформе 2, установленной на динамике 1 (рис. 1). С генератора акустических колебаний на динамик 1 подается сигнал, амплитуда и частота которого могут регулироваться как в зависимости от характеристик сливок, поступающих на переработку, так и непосредственно в процессе сбивания масла [1].

Емкость со сливками на виброприводе может быть не одна, а несколько, и их расположение может быть произвольным. При этом на процесс сбивания будут оказывать существенное влияние варианты исполнения емкости 3 (форма, размеры, толщина стенки) и примененный материал (пластичный, упругий). Например, при пластичных и толстых стенках емкости 3 колебания платформы 2 будут передаваться непосредственно на сбиваемую массу, а при упругих и тонких стенках емкости 3 в ней могут образовываться вторичные источники колебаний (в том числе на кратных частотах и частотах гармоник).

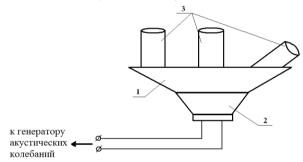


Рис. 1. – Устройство, реализующее способ приготовления сливочного масла 1 – платформа; 2 – акустический динамик; 3 – емкости со сливками

Основным преимуществом данного способа является активация сбиваемого продукта снаружи (от колеблющейся емкости, в целом, и ее стенок, в частности) и изнутри (от колеблющихся масложировых шариков). Кроме того, интенсификация сбивания сливок может быть повышена за счет использования частотно- и/или амплитудно-модулированного сигнала.

На основании полученных лабораторных исследований были проведены эксперименты по выбору характеристик маслоизготовителя для бесконтактного сбивания сливок применительно к производству масла в условиях малого и среднего агробизнеса [2, 3].

При проведении исследований в производственных условиях была использована следующая комплектация установки: герметично закрывающаяся молочная емкость 35 литров, резиновый подвес, акустический динамик НХ-301, генератор ГЗ-36, усилитель 35У-102 (рис. 2).

Емкость крепилась к потолку помещения за резиновый подвес, а на ее дне был закреплен акустический динамик мощностью 40 Вт. соединенный с выходом усилителя, подключенного к генератору.

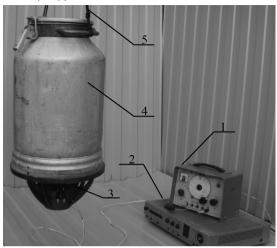


Рис. 2. – Установка для приготовления сливочного масла:

1 — генератор; 2 — усилитель; 3 — акустический динамик; 4 — емкость; 5 — резиновый подвес

Производственные исследования показали, что масло, полученное при 45...60-минутном сбивании сливок на частоте колебаний 5 Гц и амплитуде 5 мм, соответствовало требованиям стандарта по основным качественным показателями (жирность 74-78%; влага 20-24%, сухое вещество 2,5%) при условии заполнения сливками 25...30% от общего объема емкости (рис. 3).

Рис. 3. - Масло после сбивания сливок

Библиографический список:

1. Пат. 2446695 РФ, МКП А 01 **J 15/10. Способ приготовления сливочного мас**ла / А.А. Симдянкин, Е.Е. Симдянкина, С.А. Лазуткина. – № 2010112678/10; Заявлено 01.04.2010; Опубл. 10.04.2012, Бюл. № 10.

- 2. Лазуткина, С.А. Оценка амплитудно-частотных характеристик устройства для «бесконтактного» сбивания сливок / С.А. Лазуткина, А.А. Симдянкин, Е.Е. Симдянкина// Тракторы и сельскохозяйственные машины. 2010. № 9. С. 43—44.
- 3. Лазуткина, С.А. Анализ характеристик маслоизготовителя для «бесконтактного» сбивания сливок / С.А. Лазуткина, А.А. Симдянкин, Е.Е. Симдянкина//Тракторы и сельскохозяйственные машины. 2012. № 3. С.55–56.

PRODUCTION CHECK OF INSTALLATION FOR BUTTER PREPARATION

Lazutkina S.A.

Key words: buttermaker, acoustic loudspeaker, cream, butter In article results of production researches of installation for butter preparation are considered

УДК 621.77.04

ПОВЫШЕНИЕ ФИЗИКОМЕХАНИЧЕСКИХ СВОЙСТВ РАБОЧЕЙ ПОВЕРХНОСТИ ВТУЛКИ ГОРИЗОНТАЛЬНОГО ШАРНИРА ТРАКТОРА K-701 ЭЛЕКТРОМЕХАНИЧЕСКОЙ ЗАКАЛКОЙ

А.В. Морозов, кандидат технических наук, доцент ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина» Тел. 8(8422)559597, alvi.mor@mail.ru
В.А. Фрилинг, ассистент ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина» Тел. 8(8422)559597, friling.vladimir@mail.ru

Ключевые слова: упрочнение, электромеханическая закалка, твердость, глубина упрочнения

В данной работе предложен и исследован процесс электромеханической закалки втулки горизонтального шарнира рамы трактора К-701 с целью повышения ее послеремонтного ресурса. Для осуществления электромеханической закалки данной втулки была спроектирована и изготовлена инструментальная державка. Построены зависимости глубины упрочненного слоя в зависимости от силы тока.

Горизонтальный шарнир является составной частью шарнира рамы трактора K-701 и его модификаций. Сопряжение горизонтального шарнира подверженное ускоренному износу состоит из трубы рамы и двух втулок.

В следствии больших габаритных размеров деталей данного сопряжения целесо-