

THE ANALYSIS OF DESIGNS OF SEEDERS FOR CROPS OF SELSKOHO-ZYAYSTVENNYH OF CULTURES ON THE STERNEVY BACKGROUND

Lushin I. S., Sharonov I. A.

Keywords: crops, sternevy background, zero processing of the soil, design of a sternevy seeder.

In work crops of crops on an eddish-vomu to a background are considered. The analysis of designs the sternevykh of seeders on the basis of which all advantages and shortcomings are revealed is carried out.

УДК 681.586.7

ОБЗОР СУЩЕСТВУЮЩИХ КОНСТРУКЦИЙ ЭЛЕКТРОМАГНИТНЫХ РЕЛЕ

Маков А.С., студент 2 курса инженерного факультета Научный руководитель – Павлушин А.А., к.т.н., доцент ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина»

Ключевые слова: анализ, система автоматического управления, электромагнитное реле, герконовое реле.

Выполнен анализ конструкций реле, используемых в современных системах автоматического управления сельскохозяйственного производства. Выявлены основные перспективы их дальнейшего совершенствования.

В современных системах автоматического управления широко распространены реле, которые используют в электрических устройствах, где происходят большие перепады напряжения или силы тока в момент их пуска или в процессе завершения работы [19 - 28]. Кроме этого реле используют в системах управления бытовой техники (холодильник, стиральная машина, электрический чайник). К основным достоинствам реле можно отнести простоту изготовления устройства, возможность встраи-

Технические науки

вания практически в любую электрическую цепь, высокую надежность, возможность автономной работы и дистанционного управления [1 - 18].

В настоящее время наиболее распространенными являются электромагнитные реле, которые можно классифицировать (рисунок 1) по виду управления движения контактов на якорные и герконовые.

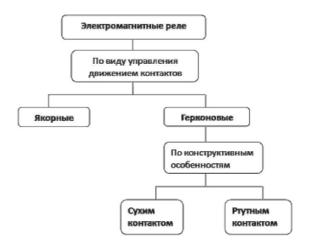


Рисунок 1 – Классификация электромагнитных реле

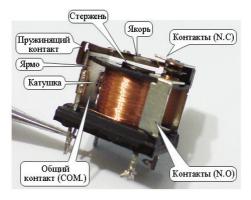


Рисунок 2 - Электромагнитное реле

Электромагнитное реле (рисунок 2) включает электромагнит, взаимодействующий посредством электромагнитного поля с металлической

подвижной пластиной – якорем, который через толкатель управляет контактами и переключателя [4].

Электромагнитные якорные реле применяют для управления процессом работы мощных электродвигателей, троллейбусов, электрооборудование кранов, телефонов, электрических звонков, вентиляторов и в других электрических устройств. Преимуществом электромагнитных якорных реле является устойчивость к импульсным помехам. К недостаткам можно отнести повышенный износ подвижных элементов реле

Герконовое (магнитоуправляемое) реле представляет собой катушку с герконом. Геркон — баллон с вакуумом или инертным газом с контактами, изготовленными из пермаллоя. Поверхности контактов покрывают золотом или серебром. Геркон размещается внутри электромагнита (рисунок 3) или в поле постоянного магнита. При подаче тока в обмотку электромагнита возникает магнитный поток, который намагничивает контактные пружины. Между ними возникает электромагнитная сила и контакты замыкаются [5].



Рисунок 3 - Герконовое реле

Герконовые реле являются комплектующими изделиями и пригодны для работы в системах управления на базе микропроцессорной техники. В настоящее время на базе геркона создано большое количество герконовых реле: кнопок, тумблеров, переключателей, регуляторов, датчиков. Кроме этого такие реле находят применение в клавиатуре промышленных приборов, в качестве датчиков позиционирования, охранных сигнализациях. В последнее время применяется в автомобиле и самолётостроении. К достоинства таких реле относят надежность и малую зону нечувствительности.

В результате выполненного анализа конструкций и принципа работы реле выявлено, что герконовые реле по сравнению с электромагнитными якорными имеют ряд преимуществ. Контакты геркона находятся в вакууме или газе и не обгорают даже, если между ними возникает искровой разряд. Такие реле имеют неограниченный срок службы, если

исключить воздействие ударных и вибрационных нагрузок. Герконовые реле обладают меньшими размерами в сравнении с якорными, бесшумные и быстродействующие. Однако существуют системы автоматики, в которых целесообразно применение электромагнитных якорных реле (в условиях сильной вибрации и ударных нагрузок).

Библиографический список:

- 1. Вечканов, И.В. Обзор существующих датчиков перемещения систем автоматического управления / И.В.Вечканов, И.А.Шаронов // «В мире научных открытий». Материалы II Всероссийской студенческой научной конференции. Ульяновск: Ульяновская ГСХА, 2013. С. 30-35.
- 2. Гильметдинов, М.И. Автоматическая система контроля уборочной техники / М.И.Гильметдинов, И.А. Шаронов // «В мире научных открытий». Материалы II Всероссийской студенческой научной конференции.- Ульяновск: Ульяновская ГСХА, 2013. С. 39-42.
- 3. Фарзалиев, Т.Ф. Современные системы автоматического управления и навигации тракторов / Т.Ф.Фарзалиев, И.А.Шаронов / «В мире научных открытий». Материалы II Всероссийской студенческой научной конференции. Ульяновск: Ульяновская ГСХА, 2013. С. 252-256
- 4. Орудия для междурядной обработки / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов, В.В. Мартынов, Е.Н. Прошкин // Сельский механизатор. 2013. № 12 (58). С. 16-17.
- 5. Экспериментальные исследования гребневой сеялки, оснащенной комбинированными сошниками / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов, И.В. Бирюков // Вестник Саратовского госагроуниверситета им. Н.И. Вавилова. 2012. № 11. С. 55-59.
- 6. Экспериментальные исследования универсального катка-гребнеобразователя / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов, В.П. Зайцев // Вестник Ульяновской государственной сельскохозяйственной академии. 2011. № 4. C. 107-112.
- 7. Экспериментальные исследования устройства для формирования гребней почвы / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов, В.В. Мартынов // Известия Международной академии аграрного образования. 2013. № 17. С. 63-67.
- 8. Курдюмов, В.И. Новый рабочий орган культиватора / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов // Сельский механизатор. 2012. № 11 (45). С. 12.
- 9. Оптимизация параметров прикатывающего устройства комбинированного посевного агрегата / В.И. Курдюмов, И.А. Шаронов, Е.С.

- Зыкин, Е.Н. Прошкин, В.Е. Прошкин // Сельскохозяйственные машины и технологии. 2014. № 1. С. 34-37.
- 10. Зыкин, Е.С. Оптимизация режимных параметров катка-гребнеобразовагеля / Е.С. Зыкин, В.И. Курдюмов, И.А. Шаронов // Доклады Российской академии сельскохозяйственных наук. 2013. № 1. С. 58-60.
- 11. Курдюмов, В.И. Оптимизация конструктивных параметров гребнеобразователя пропашной сеялки / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов // Известия Международной академии аграрного образования. 2013. № 17. С. 55-59.
- 12. Исследование комбинированного сошника в лабораторных условиях / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов, И.В.Бирюков // Вестник Ульяновской государственной сельскохозяйственной академии. 2012. № 2. С. 94-97.
- 13. Курдюмов, В.И. Универсальный каток-гребнеобразователь / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов // Вестник Алтайского государственного аграрного университета. 2011. Том 77, № 3. С. 89-95.
- 14. Курдюмов, В.И. К обоснованию расположения оси колец каткагребнеобразователя / В.И. Курдюмов, И.А. Шаронов // Нива Поволжья. 2010. № 1. С. 49-53.
- 15. Курдюмов, В.И. К обоснованию расположения рабочих элементов катка-гребнеобразователя на его раме / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов // Вестник Саратовского госагроуниверситета им. Н.И. Вавилова. 2009. \mathbb{N} 12. С. 58-62.
- 16. Шаронов, Иван Александрович. Разработка катка-гребнеобразователя с обоснованием его оптимальных параметров: дис. ...канд. технических наук / И.А. Шаронов.- Уфа: Башкирский государственный аграрный университет, 2011.
- 17. Патент RU 2444884 Гребневая сеялка / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов. опубл. 24.09.2010; Бюл. № 8.
- 18. Патент RU 62765 Каток-гребнеобразователь / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов. опубл. 10.05.2007; Бюл. № 13.
- 19. Патент RU 2347338. Каток-гребнеобразователь / В.И. Курдюмов, И.А. Шаронов. опубл. 20.03.2007; Бюл. № 6.
- 20. Патент RU 115610. Каток-гребнеобразователь / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов, И.А. Фомин, В.В. Мартынов. опубл. 29.12.2011; Бюл. № 13.
- 21. Патент RU 2466519 Каток-гребнеобразователь / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов. опубл. 16.08.2011; Бюл. № 32.

Технические науки

- 22. Патент RU 124110. Почвообрабатывающий каток / В.И. Курдюмов, И.А. Шаронов, Е.Н. Прошкин, В.Е. Прошкин. опубл. 20.01.2013; Бюл. № 2.
- 23. Патент RU 2464755 Рабочий орган культиватора / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов, опубл. 07.11.2011; Бюл. № 30.
- 24. Патент RU 2471327 Рабочий орган культиватора / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов. опубл. 10.01.2013; Бюл. № 1.
- 25. 27. Патент RU 108902 Секция сеялки-культиватора / В.И. Курдюмов, Е.С. Зыкин, И.А. Шаронов. опубл. 11.01.2011; Бюл. № 28.
- 26. 28. Патент RU 121418. Почвообрабатывающий каток / В.И. Курдюмов, И.А. Шаронов, Е.Н. Прошкин, В.Е. Прошкин. опубл. 27.03.2012; Бюл. № 30.

OVERVIEW OF THE EXISTING STRUCTURES OF ELECTROMAGNETIC RELAYS

Makov A.S.

Key words: analysis, automatic control system, electromagnetic relays, reed relays.

The analysis of structures relays used in modern automatic control systems of agricultural production. The basic prospects of their further improvement.