При анализе физико-химических показателей качества мяса свиней украинской и зарубежной селекции получили результаты, которые приведены в таблице 3.

По показателям активной кислотности значительной разницы между породами при разных уровнях откорма не наблюдалось, хотя зафиксированны большие показатели у свиней полтавской мясной и крупной белой породы украинской селекции.

Таблица 3 Физико-химические показатели качества мяса

Груп-	Порода	Активная ки- слотность, рН	Нежность, с	Влагоудержи- вающая способ-	Интенсивность окрашивания, ед.				
				ность, %	екст. х 1000				
Типичный уровень кормления									
I	КБ(У) хКБ(У)	5,66± 0,327	9,77±0,327	55,23±0,653	67,13±1,034				
II	КБ(3) xКБ(3)	5,62±0,254	10,33±0,164	53,63±0,482	67,89±0,881				
III	MxM	5,61±0,155	9,62±0,544	55,41±0,365	67,11±0,657				
IV	ПМхПМ	5,69±0,148	10,14±0,167	54,53±1,029	67,55±0,452				
Средний уровень кормления									
I	КБ(У) хКБ(У)	5,71±0,068	8,79±0,167	58,88±0,648	64,89±0,841				
II	КБ(3) xКБ(3)	5,66±0,084	9,16±0,085	57,11±0,265	65,71±0,654				
III	MxM	5,66±0,314	8,43±0,315	59,65±0,566	64,33±0,557				
IV	ПМхПМ	5,75±0,251	8,91±0,158	59,13±0,625	65,48±0,318				
Интенсивный уровень кормления									
	КБ(У) хКБ(У)	5,69±0,118	9,06±0,125	56,34±1,115	65,05±0,456				
II	КБ(З) xКБ(З)	5,63±0,245	9,85±0,092	55,12±0,662	66,21±0,365				
Ш	MxM	5,64±0,649	8,88±0,365	57,43±0,873	65,22±1,064				
IV	ПМхПМ	5,71±0,128	9,37±0,228	56,66±0,693	65,41±0,554				

Выводы. Таким образом, физико-химические показатели мяса подопытных животных при среднем уровне кормления до 100 кг находились в пределах нормы. Скрещивания разных генотипов существенно не повлияло на качественные показатели мяса и в зависимости от варианта сочетания исходных форм характеризовались индивидуальными свойствами. Увеличение предубойной живой массы до 125 кг не привело к ухудшению показателей мяса.

Нежнее оказалось мясо свиней крупной белой и миргородской пород, больше всего времени для перерезания площади мышечного пучка понадобилось для крупной белой зарубежной селекции при всех уровнях откорма — 10,33-9,16 с. Эти животные характеризовались самыми низкими показателями влагоудерживающей способности и наивысшими показателями интенсивности окрашивания.

Библиографический список:

- 1.Коваленко В. Проблема качества мяса при селекции свиней на мясность / В. Коваленко, И. Тариченко // Зоотехния. 1989. № 5. С. 34.
 - 2. Коваленко В. П. Составные мясности свиней / В. П. Коваленко // Свинарство. 1990. Вып. 46. С. 23.

УДК 636.4.084

ИСПОЛЬЗОВАНИЕ СОРБИРУЮЩИХ ДОБАВОК КОРЕТРОН И БИОКОРЕТРОН С ПРЕ-И ПРОБИОТИЧЕСКИМИ СВОЙСТВАМИ В РАЦИОНАХ СВИНОМАТОК И ИХ ВЛИЯНИЕ НА ИЗМЕНЕНИЕ ЖИВОЙ МАССЫ В СУПОРОСНЫЙ И ПОДСОСНЫЙ ПЕРИОДЫ

Using sorbing additives Korethron and Biokorethron with pre- and probiotic properties in the diets of sows and their impact on the change in body weight of pregnant and lactating period

Корниенко А.В., кандидат с.-х. наук, доцент Улитько В.Е., доктор с.-х. наук, профессор, Заслуженный деятель науки РФ Савина Е.В., кандидат с.-х. наук *Kornienko A., Ulit'ko V., Savina E.*

ФГБОУ ВПО «Ульяновская ГСХА им. П.А.Столыпина» FSBEI HPE Ulyanovsk State Agricultural Academy named after P. Stolypin kormlen @yandex.ru

Аннотация. Выявлено, что биологически активные добавки с пре-и пробиотическими свойствами Коретрон и Биокоретрон в рационах свиноматок, а также скармливание им пробиотического препарата Проваген в комплексе с адсорбирующей пребиотической минеральной добавкой Коретрон улучшает состояние микробиоценоза кормов и пищеварительного тракта, уменьшает токсикологиче-

скую нагрузку на организм, усиливает ассимиляционные процессы в нем, что положительно влияет на их живую массу в супоросный и подсосный периоды.

Summary. It is revealed that biologically active additives in the diets of sows with pre-and probiotic properties Korethron and Biokorethron, and feeding them a probiotic preparation Proven in combination with absorbent prebiotic mineral supplement Korethron - improves the condition of microflora of the digestive tract, reduces toxicological stress on the body, strengthens the processes of assimilation, positively affects their live weight in pregnant and lactating periods.

Ключевые слова: свиноматки, пробиотик, Биокоретрон, Проваген, пребиотик, Коретрон, динамика живой массы.

Keywords: sows, probiotic, Biokorethron, Provagen, prebiotic, Korethron, dynamics of the live body weight.

Молочность свиноматок зависит от сбалансированности рациона и количества зарезервированных в супоросный период питательных веществ в их организме. При дефиците питательных веществ в рационе подсосных свиноматок на образование молока расходуются резервы организма, что при длительной лактации приводит к ее истощению и снижению продуктивности. Поэтому в получении, сохранении и выращивании здоровых поросят важную роль играет полноценное кормление свиноматок в супоросный и подсосный периоды.

При этом добавление к рациону биологически активных веществ позволяет, интенсифицировать физиологические процессы в организме и стимулировать рост животных [1,4,5,7,8,9,10,11]. К таким биологически активным веществам относятся пробиотические и пребиотические добавки, а также природные диатомитовые минералы.

Одним из таких пробиотических препаратов является кормовая добавка Проваген, которая содержит лиофильно высушенную биомассу бактерий Bacillussubtilis BKM B-2287 и Bacilluslicheniformis BKM B-2414 в равном соотношении, общим биологическим свойством которых является антагонистическая активность по отношению к условно-патогенной и патогенной микрофлоре кишечника животных и продукция ферментов. Проваген оптимизирует микробный баланс в кишечнике за счет восстановления нормофлоры, способствует повышению неспецифической резистентности организма животных, увеличению сохранности и роста. В 1 г Провагена содержится не менее 1х10⁹КОЕ живых спорообразующих бактерий.

В последние годы для повышения эффективности применения пробиотиков в животноводстве и ветеринарной медицине, их зачастую используют в комплексе с другими биологически активными веществами.

В наших исследованиях мы использовали пробиотик Проваген в сочетании с кремнийсодержащей добавкой Коретрон обладающей пребиотическими свойствами.

В обеспечении рационов животных минеральными веществами большое значение отводится подкормкам на основе местных природных минералов. В Ульяновской области, аккредитованной «Испытательной лабораторией качества биологических объектов, кормления сельскохозяйственных животных и птицы» Ульяновской ГСХА совместно с группой компании «Диамикс» (ООО «Диатомовый комбинат, г.Инза) на основе диатомита разработаны кремнийсодержащие добавки Коретрон [2] и Биокоретрон [3]. Указанные кормовые добавки обладают не только сорбционными свойствами (из-за большой нанопористости), но из-за содержания в своем составе (в доступной форме) кремния (до 75-88%), алюминия, железа, калия, натрия, кальция, магния, бария, титана и др. могут использоваться в рационах животных в качестве источников минеральных веществ. Кроме того, биологическое действие Биокоретрона обуславливается воздействием включенных в его состав биологически активных веществ (витаминов, хелатированных микроэлементов и бактерий пробиотической направленности).

В связи с этим изыскание и добавление в корм веществ, оказывающих стимулирующее действие на процессы ассимиляции, является актуальным.

В задачу наших исследований входило изучение влияния использования в рационах свиноматок пробиотика Биокоретрон, а также пребиотической кремнийсодержащей добавки Коретрон и её комбинации с пробиотиком Проваген на динамику их живой массы в супоросный и подсосный периоды

Материал и метод. Изучение влияния обработки кормов данными препаратами на динамику живой массы свиноматок было проведено в условиях свиноводческого хозяйства промышленного типа ООО «Новомалыклинский СКИК» Новомалыклинского района Ульяновской области. По принципу аналогов сформировали после плодотворного их осеменения 4 группы. Свиноматки I группы были контрольными, II, III и IV — опытными. Все животные находились в одинаковых условиях содержания и получали рационы, составленные согласно детализированным нормам [6], с учётом химического состава местных кормов. Кормили свиноматок всех групп одинаково. Различие заключалось лишь в том, что кремнийсодержащие препараты в количестве30 г на голову раздавались опытным свиноматкам ежедневно в смеси с комбикормами: Коретрон - животным II группы, Биокоретрон — III группы, животные IV группы к указанному количеству пребиотической добавки Коретрон дополнительно получали 70 мл пробиотической кормовой добавки Проваген (таблица 1).

1.Схема опыта

Группа Количество животных		Условия кормления	
I – K	8	OP	
II – O	8	OP + Коретрон 30 г/гол	
III–O	8	ОР + Биокоретрон 30 г/гол	
IV-O	8	OP + Коретрон 30 г/гол + Проваген 70 мл/гол	

Примечание: К – контрольная группа; О – опытная; ОР- основной рацион

Результаты и их обсуждение. Важным показателем оптимального роста и развития поросят в эмбриональный и в постэмбриональный периоды является изменение живой массы свиноматок на протяжении производственного цикла. При недостаточности в рационах питательных и биологически активных веществ отмечается снижение среднесуточных приростов, рождение слабых и не жизненно способных поросят.

Включение в рационы свиноматок пре-пробиотических кремнийсодержащих добавок Коретрон, Биокоретрон, а также пробиотика Проваген в сочетании с пребиотической кормовой добавкой Коретрон положительно повлияло на динамику их живой массы в супоросный и подсосный периоды.

На начало опыта живая масса у свиноматок сравниваемых групп была относительно одинаковой (таблица 2). Однако в последний период супоросности четко просматривается закономерность увеличения живой массы у свиноматок опытных групп, по отношению к контрольным. За 100 суток супоросности среднесуточный прирост, характеризующий уровень ассимиляционных процессов в организме свиноматок потреблявших кормовую добавку Коретрон, составил 391,3 г, что на 10,6 %

2.Динамика живой массы свиноматок в супоросный и подсосный период

Показатель	Группа					
Показатель	I-K	II-O	III-O	IV-O		
Живая масса:						
- при постановке на опыт	208,62±2,10	208,87±3,29	208,62±3,74	208,00±4,50		
- на 100 сутки супоросности	244,00±2,46	248,00±2,80	249,62±3,58	251,62±3,56		
Прирост: абсолютный, кг	35,38±1,18	39,12±1,87	41,00±0,80	43,62±1,43		
среднесуточный, г	353,8	391,3	410,0	436,2		
Живая масса:						
- на 5 день лактации	225,62±1,87	227,87±3,01	229,62±3,24	232,37±4,42		
 на день отъёма поросят 	211,62±0,60	215,62±1,00**	216,87±1,30**	221,50±0,63***		
Снижение массы: за лактацию	14,00±0,33	12,37±0,38**	12,75±0,31*	10,87±0,30***		
-%	100,0	88,3	91,0	77,6		
Ежесуточные потери, г	500,00	441,96	455,36	388,21		
Изменение живой массы за	3,00±0,54	6,75±0,56***	8,25±0,62***	13,50±0,33***		
производственный цикл						

^{*}P<0.05;** P<0.01; ***P<0.001

больше, чем у контрольных животных (353,8 г). При введении в рацион свиноматок добавки Биокоретрон их среднесуточные приросты были на 15,8 % (410,0 г) больше, чем у контрольных маток. Животные IV группы потреблявшие кормовую добавку Коретрон в сочетании с пробиотиком Проваген указанный показатель составил 436,3 г, что на 23,3 % больше, чем в контрольной группе.

Большей живая масса у свиноматок опытных групп была и на 5 день их лактации. Известно, что за время лактации происходит снижение живой массы свиноматок, что связано с продукцией молока. Величина снижения живой массы зависит от запасов питательных веществ в организме матери, количества поросят. За период лактации у свиноматок контрольных групп, имеющих в помете 10,62 поросенка были заметно большие потери живой массы («сдаивание с тела»), чем у свиноматок опытных групп имеющих в помете больше поросят (11,37...13,62 голов). При этом наименьшие потери живой массы за этот период лактации были у свиноматок потреблявших пробиотик Проваген в сочетании с пребиотической кормовой добавкой Коретрон (IV группа). По отношению к контрольным свиноматкам у них потери живой массы при большей плодовитости были на 9,90 кг или на 22,32% меньше. У свиноматок II и III группы потреблявших кормовые добавки Коретрон и Биокоретрон и имеющих в помете на 7,06...17,65% больше поросят, чем контрольные свиноматки потеря живой массы за этот период лактации составила 12,37(P<0,01) и 12,75 (P<0,05) кг соответственно, что на 11,60 и 8,93% меньше контрольных животных.

За время подсосного периода наибольшие потери в живой массе наблюдались у свиноматок контрольной группы (14,00 кг). У свиноматок опытных групп снижение живой массы было меньшим, особенно в IV группе (10,87 кг). Они ежесуточно теряли 388,21 г живой массы против 500,00 г у контрольных свиноматок, что можно объяснить большим запасом питательных веществ в их организме в период супоросности и лучшей экономичностью обмена веществ.

Вывод. Включение в рацион свиноматок кремнийсодержащих пре-и пробиотических кормовых добавок Коретрон и Биокоретрон, а также пробиотика Проваген в сочетании с пребиотической кормо-

вой добавкой Коретрон в период супоросности и лактации способствует повышению полноценности их кормления и экономичности обмена веществ, что соответственно приводит к большему резервированию в супоросный период питательных веществ в их организме и в то же время обеспечивает значительно меньшие потери их живой массы за наиболее напряженный период их лактации. Этому способствовало повышение полноценности кормления и снижения токсикологической нагрузки на их организм за счет подавления нежелательной микрофлоры в желудочно-кишечном тракте, более интенсивно протекающими ассимиляционными процессами в период их супоросности и лучшей эффективностью (экономичностью) использования питательных веществ в период лактации. При этом наиболее выражено эти изменения наблюдались при использовании в составе комбикорма кормовой добавки Коретрон в сочетании с пробиотиком Проваген.

Библиографический список:

- 1. Голев Л., Клименко В., Бояринцев Л., Хапугин В. Использование биологически активных препаратов в свиноводстве // Свиноводство. 1998. –№2.–С.13-15.
- 2. Ерисанова О.Е. Добавка кормовая комплексная «Коретрон»/Улитько В.Е., Пыхтина Л.А., Ерисанова О.Е., Лифанова С.П., Десятов О.А., Семенова Ю.В., Корниенко А.В.//Технические условия ТУ 9291-011-25310144-2009. утверждено «Федеральной службой по ветеринарному и фитосанитарному надзору МСХ РФ и «Всероссийским государственным Центром качества и стандартизации лекарственных средств для животных и кормов (ФГБУ «ВГНКИ»). -2011.-18 С.
- 3. Ерисанова О.Е. Добавка кормовая комплексная «Биокоретрон форте»/Улитько В.Е., Пыхтина Л.А., Ерисанова О.Е., Лифанова С.П., Десятов О.А., Семенова Ю.В., Корниенко А.В.//Технические условия ТУ 9296-015-25310144-2011. утверждено «Федеральной службой по ветеринарному и фитосанитарному надзору МСХ РФ и «Всероссийским государственным Центром качества и стандартизации лекарственных средств для животных и кормов (ФГБУ «ВГНКИ»). -2011.-25 С.
- 4. Илиеш В.Д., Горячева М.М. Пробиотики путь к качеству и безопасности продуктов питания // Свиноводство. 2012. №6 С.25-27.
- 5. Корниенко А.В., Улитько В.Е. Ферментно-пробиотический препарат Бацелл в рационах свиноматок, как фактор повышения уровня реализации их биоресурсного потенциала//Зоотехния. 2014. № 10. С.8-9.
- 6. Нормы и рационы кормления сельскохозяйственных животных. Справочное пособие. 3-е издание переработанное и дополненное. / А.П.Калашников, В.И.Фисинин, В.В.Щеглов, Н.И.Клейменов.- М.: Россельхозакадемия, 2003.- 456 с.
- 7. Улитько В.Е. Инновационные подходы в решении проблемных вопросов в кормлении сельскохозяйственных животных /В.Е. Улитько //Вестник Ульяновской государственной сельскохозяйственной академии. №4 (28). 2014. С. 132-143.
- 8. Стенькин Н.И. Мониторинг тяжелых металло в мясе молодняка бестужевской породы при использовании в рационе кремнийсодержащих препаратов /Н.И. Стенькин, А.В. Мошенсков, М.Г. Мулянов, О.А. Десятов //Зоотехния. 2012. №5. С. 11-12.
- 9.Мулянов Г.М. Морфобиохимический статус крови и мясная продуктивность бестужевских телок при скармливании кремнесодержащих препаратов /Г.М. Мулянов, О.А. Десятов, Н.И. Стенькин, А.Г. Ариткин //Зоотехния. 2011. №8. С. 20-21.
- 10. Пыхтина Л.А. Препараты «Коретрон» и «Биокоретрон-Форте» как средство повышения реализации биоресурсного потенциала бройлеров /Л.А. Пыхтина, В.Е. Улитько, О.Е. Ерисанова //Вестник Ульяновской государственной сельскохозяйственной академии. 2011. №4. С. 95-99.
- 11.Улитько В.Е. Алиментарные факторы максимальной реализации генетического понциала продуктивности сельскохозяйственных животных /В.Е. Улитько, Л.А. Пыхтина //Вестник Ульяновской государственной сельскохозяйственной академии. 2008. №2. С. 92-96.

УДК 636.5.084

МОРФОЛОГИЧЕСКИЙ, АМИНОКИСЛОТНЫЙ СОСТАВ И ИНКУБАЦИОННЫЕ КАЧЕСТВА ЯИЦ КУР РОДИТЕЛЬСКОГО СТАДА ПРИ ВКЛЮЧЕНИИ В РАЦИОН АНТИОКСИДАНТНОГО ПРЕПАРАТА

Morphological, amino acid composition and hatching egg quality breeder hens when included in the diet of antioxidant drug «Lipovitam Beta»

Л.Ю. Гуляева, кандидат с.-х. наук, доцент, В.Е Улитько, доктор с.-х. наук, профессор, О.Е. Ерисанова, доктор с.-х. наук, профессор, Позмогов К.В., кандидат с.-х. наук *L.Y. Gulyaeva, V.E. Ulitko, O.E. Erisanova*

ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина», ООО «Евробиотех» VGBOU VPO «Ulyanovsk State Agricultural Academy them. P.A. Stolypin» kormlen@yandex.ru

Аннотация. В статье экспериментально обосновано целесообразность применения в комбикормах для кур-несушек родительского стада антиоксидантного бета-каротинсодержащего препарата липосомальной формы «Липовитам Бета», что позволяет повысить продуктивность кур, а также