УДК 579.63

МИКРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ СЫРОВ

Бурова Н.С., студент 4 курса факультета ветеринарной медицины Научные руководители – Сульдина Е.В., аспирант; Васильев Д.А., доктор биологических наук, профессор

ФГБОУ ВПО «Ульяновская ГСХА им. П.А. Столыпина»

Ключевые слова: сыр, бактериология, микроскопия, закваска, патогенные микроорганизмы.

Аннотация. Работа посвящена проведению микроскопического исследования мазков-отпечатков сыров. При проведении исследований визуально определено соотношение молочнокислых стрептококков и палочек в представленных образцах сыра как 2:1. Патогенной микрофлоры в исследуемых сырах найдено не было.

Сыр – это пищевой продукт, вырабатываемый из молока путем коагуляции белков, обработки полученного белкового сгустка и последующего созревания сырной массы. При созревании все составные части сырной массы подвергаются глубоким изменениям, в результате которых в ней накапливаются вкусовые и ароматические вещества, приобретаются свойственные данному виду сыра консистенция и рисунок [1-18].

В основе производства сыра используется ферментативно- микробиологический процесс, протекание которого зависит от физико- химических свойств молока, состава микроорганизмов закваски, их способности развиваться в молоке, в сгустке и сырной массе и условий технологического процесса. При нарушении хотя бы одного компонента этого процесса влечет за собой контаминацию сыров патогенной микрофлорой [2-6].

Целью наших исследований было изучение микрофлоры сыра и роли микроорганизмов в формировании качества сыров.

Исследования проводились на кафедре микробиологии, вирусологии, эпизоотологии и ветеринарно-санитарной экспертизы по общепринятым микробиологическим методам [1].

Результаты исследований. Сыры вырабатывают с использованием чистых и смешанных культур молочнокислых бактерий, пропионовокислых бактерий, микроорганизмов сырой слизи и плесневых грибов. Для обеспечения условий формирования качественного состава микрофлоры сыра, молоко подвергают бродильной и сычужно-бродильной пробам, позволяющим по характеру сгустка судить о присутствии различных групп микроорганизмов в молоке.

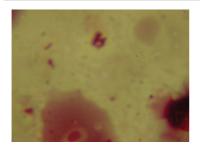


Рисунок 1 - Российский сыр внешний слой

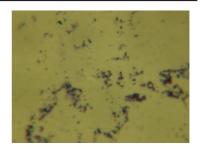


Рисунок 2 - Пошехонский сыр глубокий слой

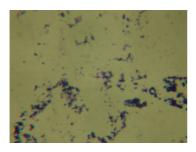


Рисунок 3 - Российский сыр внешний слой

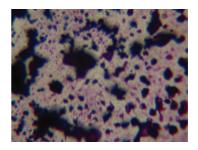


Рисунок 4 - Пошехонский сыр глубокий слой

Основные биотехнологические превращения происходят при созревании сыров. Созревание - очень сложный многоэтапный процесс, на который оказывают влияние вид использованных культур, качество сырья, соблюдение технологических и санитарно-гигиенических требований при производстве.

Процесс созревания в химическом отношении весьма многообразен. В молодом сыре весь азот входит в состав нерастворимого белка, но по мере созревания сыра белок расщепляется на растворимые пептиды, а далее на свободные аминокислоты (протеолиз), интенсивность этого процесса зависит от протеолитической активности микрофлоры.

В некоторых сырах расщепление белка ограниченно: в твердых сырах в растворимые продукты превращаются всего 25-35 % белка, в мягких практически весь белок. Помимо изменений в белковых компонентах, при созревании происходит гидролиз значительной части жира (Липолиз) при этом основную роль играют липолитические ферменты содержащихся в сыре микроорганизмов.

Некоторые микроорганизмы играют весьма специфическую роль в созревании определенных сортов сыра. Синяя и зеленоватая окраска и неповторимый вкус Рокфора обусловлены ростом в толще сыра плесени *Penicillium rogueforti*. Иногда при созревании сыров, созревающих под действием плесени, используют бесцветный мутант *Pen. rogueforti*, чтобы учесть запросы тех потребителей, которым нравится вкус, но неприятна окраска сыра.

Нами исследованы две пробы сыра сортов «Пошехонский» и «Российский» на состав микрофлоры. С каждого образца готовили по три мазка-отпечака с поверхностных и глубоких слоев, фиксировали и окрашивали по Грамму (рис. 1-4).

Библиографический список:

- 1. Методические указания МУК 4.2.2884-11. Методы микробиологического контроля объектов окружающей среды и пищевых продуктов. М.: ФЦ Роспотребнадзора. 2011.- 24 с.
- 2. Разработка системы фаготипирования листерий / Е.Н. Ковалева, Д.А. Васильев, Е.В. Сульдина // Инфекция и иммунитет. 2014. сентябрь, специальный выпуск С. 87-88.
- 3. Выделение бактериофагов бактерий рода Listeria / Д.А. Васильев, Е.Н. Ковалева, Е.В. Сульдина // Инфекция и иммунитет. 2014. сентябрь, специальный выпуск С. 69-70.
- 4. Основные биологические свойства листериозных бактериофагов / Е.В. Сульдина, Д.А. Васильев, Е.Н. Ковалева // Материалы VI Международной научно-практической конференции «Аграрная наука и образование на современном этапе развития: опыт, проблемы и пути их решения». Часть III / Ульяновск. ГСХА им. П.А.Столыпина. 2015. С.125-127.
- Фаготипирование листерий / Е.В. Сульдина, Е.Н. Ковалева, Д.А. Васильев // Материалы Всероссийского симпозиума с международным участием «Современные проблемы физиологии, экологии и биотехнологии микроорганизмов». Москва, МГУ имени М.В. Ломоносова. Биологический факультет. – М.: МАКС Пресс. - 2014. – C.223
- 6. Васильев, Д.А. Разработка параметров количественного определения бактерий видов *Listeria monocytogenes* и *Listeria ivanovii* на основе мультиплексной пцр в режиме «реального времени» / Д.А. Васильев, Е.Н. Ковалева, Е.В. Сульдина, А.В. Мастиленко // Материалы Международной научно-практической конференции, посвященной 55-летию ВНИИВВИМ «Актуальные вопросы контроля инфекционных болезней животных». Покров. 2014. С. 91-96.
- 7. Золотухин С.Н. Изучение чувствительности E.coli к колифагам / С.Н. Золотухин, Н.И. Молофеева, Д.А. Васильев // Вестник Ульяновской государствен-

- ной сельскохозяйственной академии. Ульяновск. 2001. № 11. С. 59.
- 8. Золотухин С.Н. Чувствительность патогенных энтеробактерий, выделенных при диареях молодняка животных к антибиотикам и специфическим бактериофагам / С.Н. Золотухин, А.С. Мелехин, Д.А. Васильев, Л.С. Каврук, Н.И. Молофеева, Л.П. Пульчеровская, Б.М. Коритняк, Е.А. Бульканова // Профилактика, диагностика и лечение инфекционных болезней, общих для людей и животных. Ульяновск. 2006. С. 233-236.
- 9. Золотухин С.Н. Выделение и селекция клонов бактериофагов патогенных энтеробактерий / С.Н. Золотухин, Д.А. Васильев, Л.С. Кавруг, Н.И. Молофеева, Л.П. Пульчеровская, Б.М. Коритняк, Е.А. Бульканова, Н.А. Феоктистова, Е.Н. Пожарникова, А.С. Мелехин, Н.Г. Барт, Н.П. Катмакова // Профилактика, диагностика и лечение инфекционных болезней, общих для людей и животных. Ульяновск. 2006. С. 227-230.
- 10. Золотухин С.Н. Штаммы бактериофагов малоизученных патогенных энтеробактерий и их практическое применение / С.Н. Золотухин, Д.А. Васильев, Л.С. Каврук, Л.П. Пульчеровская, Н.И. Молофеева, Б.М. Коритняк, А.Ю. Кузнецов, Е.А. Бульканова, Е.Н. Пожарникова, Н.А. Феоктистова, А.С. Мелехин, С.В. Ленев // В сборнике: Научные разработки и научно-консультационные услуги Ульяновской ГСХА. Информационно-справочный указатель. Ульяновск. - 2006. - С. 45-49.
- Потатуркина-Нестерова Н.И. Атомно-силовая микроскопия как метод исследования в микробиологии / Н.И. Потатуркина-Нестерова, И.С. Немова, А.В. Даньшина // Современные проблемы науки и образования. 2012. № 3. С. 316.
- 12. Л.Л. Елистратова Современное состояние проблемы демодекоза / Л.Л. Елистратова, Н.И. Потатуркина-Нестерова, А.С. Нестеров // Фундаментальные исследования. 2011. № 9-1. С. 67-69.
- 13. Потатуркина-Нестерова Н.И. Изменение вирулентных свойств урогенитальных энтерококков в условиях межмикробных взаимоотношений / Н.И. Потатуркина-Нестерова, И.С. Немова, М.Н. Артамонова, Е.Б. Хромова, О.Е. Хохлова, Н.В. Трофимова, О.В. Теплякова, И.А. Кочергина // Современные проблемы науки и образования. 2013. № 1. С. 8.
- 14. Белозерова Е.А. Влияние хронического поступления солей меди, цинка и свинца на микробиологический баланс толстой кишки в условиях эксперимента / Е.А. Белозерова, Н.И. Потатуркина-Нестерова, Е.С. Климов. Токсикологический вестник. 2007. № 4. С. 26-30.
- 15. Сульдина Е.В. Применение метода молекулярно-генетического анализа для видовой идентификации мяса / Е.В. Сульдина, О.Л. Колбасова, С.В. Мерчина // Актуальные проблемы инфекционной патологии и биотехнологии Мате-

- риалы V-й Всероссийской (с международным участием) студенческой научной конференции. Ульяновск. 2012. С. 227-231.
- 16. Сульдина Е.В. Применение метода Real-time PCR для видовой идентификации мясного сырья в мелкоизмельченных полуфабрикатах и готовых мясных продуктах / Е.В. Сульдина, О.Л. Колбасова, С.В. Мерчина // Актуальные проблемы инфекционной патологии и биотехнологии Материалы V-й Всероссийской (с международным участием) студенческой научной конференции. Ульяновск. 2012. С. 236-240.
- 17. Сульдина Е.В. Определение видовой принадлежности мясного сырья в мелкоизмельченных полуфабрикатах и готовых мясных продуктах методом ДНК-диагностики / Е.В. Сульдина, О.Л. Колбасова, С.В. Мерчина // Актуальные проблемы инфекционной патологии и биотехнологии Материалы V-й Всероссийской (с международным участием) студенческой научной конференции. Ульяновск. 2012. С. 231-235.
- Сульдина Е.В. Определение видовой принадлежности мяса методом полимеразной цепной реакции в режиме «Реального» времени / Е.В. Сульдина, О.Л. Колбасова, С.В. Мерчина // Актуальные проблемы инфекционной патологии и биотехнологии Материалы V-й Всероссийской (с международным участием) студенческой научной конференции. Ульяновск. 2012. С. 241-244.

MICROSCOPIC EXAMINATION OF CHEESE

Burova N.S., Suldina E.V.

Keywords: cheese, bacteriology, microscopy, yeast, pathogenic microorganisms.

Summary. The work is dedicated to conducting microscopic examination of smears cheese. In conducting research visually determined the ratio of lactic streptococci and sticks in the submitted samples of cheese as 2: 1. Pathogenic organisms in the test cheeses were found.