- 9. Газизов, И.С. Поглощение воды растениями при введении соли калия в их надземные органы / И.С. Газизов, А.А. Зялалов, И.Ф. Ионенко, Н.И. Газизова // Физиология растений .- 1999.- №3.- С.438- 442.
- 10. Ивановский, Д.И. Физиология растений / Д.И. Ивановский.- М.: Либроком, 2012.-554c.
- 11. Сабинин, Д.А. Избранные труды по минеральному питанию растений / Д.А. Сабинин.-М.: Наука, 1971.- 512с.
- 12. Ягодин, Б.А. Агрохимия 2-е изд. / Б.А. Ягодин, П.М. Смирнов, А.В. Петербургский и др.- М.: Агропромиздат, 1989.- 639с.
- 13. Арнаутовский, И.Д. Влияние природно-климатических факторов на содер-

жание макро- и микроэлементов в почвах и возделываемых кормах / И.Д. Арнаутовский, С.А. Гусева // Земледелие.- 2008.- №6.- 21с.

- 14. Пронько, В.В. Влияние минеральных и бактериальных удобрений на потребление элементов питания и продуктивность зерного сорго в степном Поволжье / В.В. Пронько, Т.А. Алинкина // Вестник Саратовского ГАУ.-2011.- №4.- С.17-19.
- 15. Каргин, В.И. Эффективность биопрепаратов в посевах яровой пшеницы / В.И. Каргин, С.Н. Немцев, Р.А. Захаркина, Ю.И. Каргин // Доклады РАСХН .- 2011.- №1.- С.35-38.

УДК 633.1:631.559

ВЛИЯНИЕ НОРМ ВЫСЕВА И ОБРАБОТКИ ГЕРБИЦИДАМИ НА УРОЖАЙНОСТЬ И ЭЛЕМЕНТЫ ЕЕ СТРУКТУРЫ ЯРОВОГО ТРИТИКАЛЕ

Куконкова Анастасия Александровна, аспирант, кафедры «Технология хранения и переработки сельскохозяйственной продукции»

Терехов Михаил Борисович, доктор сельскохозяйственных наук, профессор, заведующий кафедрой «Технология хранения и переработки сельскохозяйственной продукции» ректор

ФГБОУ ВПО «Нижегородская государственная сельскохозяйственная академия» e-mail:kuki2009@mail.ru; тел. 8(831)4626508 603107 г. Нижний Новгород, пр. Гагарина, 97.

Ключевые слова: густота, всхожесть, сохранность, урожай, продуктивность На величину урожайности большое влияние оказали нормы высева, обработка гербицидами, погодные условия. Величина формируемого урожая складывается из элементов продуктивности, в число которых входит густота продуктивного стеблестоя, число зерен в колосе, массы 1000 зерен и продуктивность колоса.

Многолетняя практика агротехники получения высоких урожаев тритикале, как, впрочем, и большинства зерновых культур, подтверждает необходимость применения научно обоснованных норм высева и обработки гербицидом.

Цель исследования - повышение урожайности ярового тритикале.

Задача - определить оптимальные нормы высева и рассмотреть зависимость от обработки гербицидами.

Наши исследования проводились на

опытном поле кафедры растениеводства в учебно-опытном хозяйстве «Новинки» Нижегородской ГСХА.

Почва опытного участка светло-серая лесная, легкосуглинистая по гранулометрическому составу, содержание гумуса - 1,48%,содержание легкогидролизуемого азота 3,43 мг/100 г почвы, подвижного P_2O_5 -18,5 мг/100г, обменного K_2O —8,28 мг/100г. По Кирсанову.

Опыт закладывался по двухфакторной схеме в 4-кратной повторности:

фактор A - влияние средств защиты: без обработки и с обработкой гербицидами (Магнум + Дикамерон Гранд);

 ϕ актор В — норма высева в пяти градациях - 5,0; 5,5; 6,0; 6,5; 7,0 млн. всхожих зерен на гектар.

Опыт закладывался методом расщепленной делянки. Удобрения вносили в дозе $N_{60}P_{60}K_{60}$. Агротехника в опыте общепринятая для зоны. В качестве посевного материала использовали яровой тритикале сорт Ульяна.

Продуктивность посева в значительной мере зависит от элементов структуры урожая, которые в свою очередь находятся в тесной взаимосвязи с полевой всхожестью семян и сохранностью растений тритикале [1].

Густота всходов - это первый показатель структуры урожайности, который можно оценить визуально. На его основе можно проводить обследование посевов, обращая внимание на равномерность и дружность появления всходов [2,3]. Оптимальной густотой всходов зерновых культур в Нечерноземной зоне следует считать не менее 400 – 500 растений на 1 м² при норме высева 6 млн. всхожих зерен на 1 га, при полевой всхожести 70 – 80%.

Густота всходов и полевая всхожесть семян зависели как от нормы высева, об-

работки гербицидами, так и метеорологических условий складывавшихся в период посев — всходы (табл.1). В среднем за три года, густота всходов изменялась от 398 до 490 шт./м² в вариантах без обработки гербицидами, и 419-492 шт./м² на участках обработанных гербицидами. Увеличением нормы высева приводило к увеличению густоты всходов.

В условиях Нечерноземной зоны полевая всхожесть яровых зерновых культур в оптимальные годы не превышает 80%, а в годы с неблагоприятными условиями произрастания полевая всхожесть в зависимости от нормы высева и метеорологических условий вегетационного периода значительно снижается.

Наиболее низкая полевая всхожесть ярового тритикале отмечалась в условиях дефицита влаги в 2009 году. Максимальная полевая всхожесть на вариантах обработанных гербицидами составил 70,3 — 83,8%. На вариантах не обработанных гербицидами она была значительно ниже.

При увеличении нормы высева до 7 млн. всхожих зерен на 1 га, полевая всхожесть снижалась.

В течение вегетации число растений на единицу площади может изменятся. Вследствие ряда причин в посеве наблюдается выпады, как самих растений, так и количе-

Таблица 1 Полевая всхожесть семян и выживаемость растений ярового тритикале (2007-2009гг.)

Норма высева, млн. всх. зерен на 1 га	Густота всходов шт./м²	Полевая всхожесть %	Густота стояния растений перед уборкой, шт./м²	Сохранность,%			
Без обработки гербицидов							
5,0	398	79,6	380	95,5			
5,5	434	78,9	413	95,2			
6,0	463	77,2	436	94,2			
6,5	490	75,4	460	93,9			
7,0	478	68,3	438	91,6			
С обработкой гербицидами							
5,0	419	83,8	404	96,4			
5,5	424	77,1	406	95,8			
6,0	462	77,0	435	94,2			
6,5	490	75,4	456	93,1			
7,0	492	70,3	457	92,9			

Элементы структуры ярового тритикале(2007-2009гг.)

Норма высева, млн. всх. зерен на 1 га	Продуктивность колоса, г	Продуктивных стеблей, шт./м²	Зерен в колосе, шт.	Масса 1000 зерен, г.				
Без обработки гербицидов								
5,0	1,37	380	38	34				
5,5	1,04	481	36	35				
6,0	1,28	481	35	36				
6,5	1,21	556	34	36				
7,0	1,12	586	34	37				
С обработкой гербицидами								
5,0	1,37	380	38	34				
5,5	1,04	481	36	35				
6,0	1,28	481	35	36				
6,5	1,21	556	34	36				
7,0	1,12	586	34	37				

ство продуктивных стеблей [7].

Сохранность растений в наших исследованиях была относительно высокой. В среднем за годы исследований она изменялась на вариантах без обработки гербицидами от 95,5 до 91%,6,а на вариантах обработанных гербицидами от 96,4 до 92,9%. Следует отметить, что сохранность растений была высокой.

Максимальная густота стояния растений перед уборкой варьировала на вариантах без обработки гербицидами от 380до 460 шт/м² и на вариантах обработанных гербицидами от 404 до 457 шт/м².

Увеличение нормы высева с 5 до 6,5 млн. всхожих зерен на 1 га способствовало повышению густоты стояния растений перед уборкой, а дальнейшее увеличение нормы высева до 7 млн. всхожих зерен на 1 га приводило к увеличению этого показателя на вариантах не обработанных гербицидами.

Густота продуктивного стеблестоя является главным показателем в структуре урожайности, определяющим величину биологического урожая [8]. Его величина в среднем за 3 года (табл. 2) изменялась от 380 до 587 стеблей на 1 м² на вариантах без обработки и 456 до 620 стеблей на 1 м² на вариантах с обработкой гербицидами. Наиболее низкой густотой продуктивного стеблестоя по всем вариантам характеризовал-

ся 2007г, а максимальными 2009г.

Увеличение нормы высева приводило к повышению густоты продуктивного стеблестоя. Максимальная густота продуктивного стеблестоя отмечалась на варианте с нормой высева 7 млн. всхожих зерен на 1 га.

В наших исследования, в течение всех трех лет густота продуктивного стеблестоя была ниже, чем густота стояния растений на единице площади, то есть не каждое сохранившееся к уборке урожая растение имело продуктивные стебли.

Озерненность колоса является одним из элементов его продуктивности [5] . В наших исследованиях озерненность колоса, в среднем за три года варьировала от 34 до 39 зерен на вариантах без обработки и от 35 до 43 зерен на вариантах с обработкой гербицидами. Наибольшая озерненность колоса была получена на вариантах с нормой высева 5 и 5,5 млн. всхожих зерен на 1 га. Дальнейшее увеличение нормы высева сопровождалось снижением озерненности колоса.

Масса 1000 зерен является вторым важнейшим элементом продуктивности колоса [6]. В среднем за три года она варыровала от 34,3 до 36,9 г. на вариантах без обработки и от 35,9 до 40,2 зерен на вариантах с обработкой гербицидами. Зерно с максимальной массой 1000 зерен сформировалось в 2009, а более низкой в 2007году.

Урожайность ярового тритикале, т/га

Норма высева, млн. всх. зерен на 1 га	2007г.	2008г.	2009г.	Среднее за 3 года			
Без обработки гербицидов							
5,0	1,78	3,70	3,15	2,88			
5,5	1,86	3,48	4,43	3,26			
6,0	1,76	4,16	4,55	3,49			
6,5	1,89	3,05	4,67	3,20			
7,0	1,81	3,55	4,01	3,12			
С обработкой гербицидами							
5,0	2,01	4,43	4,50	3,65			
5,5	2,13	4,42	4,66	3,74			
6,0	2,14	4,61	4,77	3,84			
6,5	1,95	4,29	4,49	3,58			
7,0	1,98	4,18	4,43	3,53			
HCP ₀₅ , ц∕га фактора А	0,14	0,23	0,14				
НСР ₀₅ , ц/га фактора В и взаимодействия АВ	0,22	0,36	0,11				
HCP ₀₅ , ц/га средних	0,31	0,50	0,22				

Озерненность колоса и масса 1000 зерен оказали решающее влияние на его продуктивность, которая, в среднем за три года, варьировала в пределах 1,04 - 1,37г. на вариантах без обработки и 1,21 - 1,58 г. на вариантах с обработкой гербицидами.

Наиболее продуктивный колос сформировался в 2009 году, главным образом за счет высокой массы 1000 зерен. В 2008 году продуктивность была ниже и, сформировалась за счет его озерненности. Самая низкая продуктивность колоса сформировалась в 2007 году.

Анализ урожайности ярового тритикале (табл.3) показывает, что увеличение нормы высева с 5,0 до 6,0 млн. всхожих зерен на 1 га сопровождалась повышением урожайности зерна. В среднем за три года максимальная урожайность получена при норме высева 6 млн. всхожих зерен на 1 га, и составила на варианте без гербицидов – 3,49 т/га, а при обработке гербицидами – 3,84 т/га.

Урожайность ярового тритикале зависела в значительной степени от метеорологических условий складывавшихся в течение вегетации. Так, в условиях достаточного увлажнения 2008-2009 годов, урожайность была выше в 1,9 — 2,4 на вариантах без обработки и в 2,1 — 2,2 раза на вариантах с обработкой гербицидами, по сравнению с условиями 2007г., в связи с недостаточным увлажнением.

Выводы:

1. Густота всходов и полевая всхожесть семян зависит от нормы высева, обработки гербицидами и метеорологических условий складывавшихся в период посев — всходы. При увеличении нормы высева до 7 млн. всхожих зерен на 1 га, полевая всхожесть снижалась от 79,6 до 68,3% без обработки

гербицида, и 83,8-70,3% на вариантах обработанными гербицидами.

- 2. В среднем за три года исследования максимальная урожайность тритикале получена при норме высева 6 млн. всхожих зерен на 1 га и составила на варианте без гербицидов 3,49 ц/га, а при обработке гербицидами 3,84 ц/га.
- 3. Биологический урожай тритикале формируется под влиянием высокой густоты продуктивного стеблестоя и продуктивности колоса.

Библиографический список

- 1. Дудук, А.А. Влияние сроков основной обработки почвы на урожайность тритикале /А.А. Дудук, П.И. Мозоль, П.П. Тарасенко // Наука- производству: сб. стат. науч. -прак. конф. –Гродно: УО «ГГАУ», 2002. –с.141-142
- 2. Кочурко, В.И. Влияние норм высева на продуктивность колоса озимой тритикале Дар Беларуси / Кочурко В.И., Пугач А.А. // Сб. науч. тр. Совершенствование агротех¬ники полевых и кормовых культур, Горки, 2001 C.27-29.
- 3. Кочурко, В.И. Особенности формирования урожая озимой тритикале в зависимости от приемов возделывания.-Горки:БГСХА,2002.-112 с.
- 4. Мальцев, В.Ф., Каюмов М.К., Ториков В.Е. и др. Система биологизации земледелия Нечерноземной зоны России / В.Ф. Мальцев, М.К. Каюмов, В.Е. Ториков и др // Т2. «Росинформагротех». 2002. 576 с.
 - 5. Поздняков Е.П. Особенности форми-

- рования урожая озимой тритикале в зависимости от норм высева и уровня минерального питания в условиях ЦРНЗ: Автореф. дис. канд. с.-х. наук. М., 2005 -19 с.
- 6. Поздняков, Е.П. Формирование урожая различных сортов озимой тритикале в зависимости от норм высева и фонов минерального питания. /Е.П. Позжняков, В.Е. Долгодоворов // Доклады ТСХА вып. 277. М.:Изд-во МСХА им. К.А. Тимирязева. 2005. С. 199-202.
- 7. Пома, Н.Г. Особенности формирования урожайности и качества зерна сортов озимой тритикале в зависимости от уровня азотного питания. / Н.Г. Пома, Б.П. Лоба, А.В. Сергеев, В.В. Осипов // Основы повышения эффективности сельского хозяйства Евро-Северо-Востока России. Кострома, РАСХН. 2008. С. 178-183.
- 8. Пшеничко, Н.М.Влияние нормы высева на урожайность и качество зерна ярового тритикале / Н.М. Пшеничко, В.С. Тощев//Совершенствование технологий производства и повышение качества продуктивности растениеводства .- Н.Новгород. 2008.-c.28-30
- 9. Серажетдинов И. В., Терехов М.Б. Продуктивность озимой тритикале при внесении расчетной нормы удобрения в условиях юго-востока Волго-Вятского региона / И. В. Серажетдинов, М.Б.Терехов // Научно-теоретический журнал «Вестник Ульяновской сельскохозяйственной академии». Ульяновск, 2012г. №1(17) —с.44