УРОЖАЙНОСТЬ СЕМЯН КЛЕВЕРА ПАННОНСКОГО (TRIFOLIUM PANNONICUM JACQ) ПРИ РАЗЛИЧНЫХ РЕЖИМАХ ПИТАНИЯ

Кшникаткина Анна Николаевна, доктор сельскохозяйственных наук, профессор кафедры «Переработка сельскохозяйственной продукции»

Семенчев Андрей Викторович, аспирант ФГБОУ ВПО «Пензенская ГСХА» тел: 8(412) 628-151, e-mail: Penzatehfak@rambler.ru 440014, г. Пенза, ул. Ботаническая, 30

Ключевые слова: клевер паннонский, минеральные удобрения, симбиотическая деятельность, параметры фотосинтеза, структура урожая, урожайность, экономическая эффективность.

Приведены данные по изучению влияния минеральных удобрений на урожайность семян клевера паннонского. Установлено, что внесение фосфорно-калийных удобрений в дозе $N_{\rm so}P_{\rm so}K_{\rm 120}$ увеличивает урожай семян клевера паннонского на 54,7 %.

Расширение посевов клевера является приоритетным направлением развития адаптивного кормопроизводства, в современных условиях особенно велика его роль в биологизации земледелия. Эта проблема в настоящее время решается на основе внедрения высокоурожайных сортов, сочетающих высокий урожай кормовой массы и семян, высокую зимостойкость и стрессоустойчивость [1, 2]. При возделывании многолетних трав наиболее эффективным средством управления процессами формирования урожая является оптимизация минерального питания [3, 4, 5].

В Среднем Поволжье перспективной кормовой культурой является клевер паннонский.

Важной задачей в расширении посевов клевера паннонского является разработка технологических приемов возделывания на семена. В связи с этим на опытном поле учебно-опытного хозяйства ФГБОУ ВПО «Пензенская ГСХА» в 2011-2012 гг. проводились исследования по изучению влияния различных доз минеральных удобрений на повышение урожайности семян клевера паннонского.

Программа исследований предусматривала решение следующих задач: установить влияние минеральных удобрений на семенную продуктивность клевера паннонского; определить формирование, величину и активность симбиотического аппарата; установить параметры фотосинтетической деятельности; дать экономическую и энерге-

тическую оценку изучаемых агроприемов.

Почва опытного участка — чернозем выщелоченный, среднегумусный, среднемощный тяжелосуглинистый. Плотность почвы — 1,18-1,20 г/см³, общая пористость почвы — 55-60%, содержание водопрочных агрегатов — 56%, пористая аэрация — 18-20%, наименьшая влагоемкость — 32%. Содержание гумуса в пахотном слое - 6,5%, подвижного фосфора — 55 мг/кг почвы, обменного калия — 177 мг/кг почвы, обеспеченность подвижными формами молибдена, бора, марганца, меди, цинка и кобальта низкая, реакция почвенного раствора слабокислая, рН сла - 5,4.

Фосфорные удобрения вносили в виде суперфосфата, калийные - калийной соли, азотные - аммиачной селитры. Предшественник - чистый пар. Норма высева — 3 млн. всхожих семян на гектар, способ посева рядовой. Повторность опыта трехкратная, площадь делянки 10 м². Перед посевом семена скарифицировали и инокулировали ризоторфином. Объект исследований — клевер паннонский сорт Аник.

Схема опыта: 1. Без удобрений (контроль), 2. N_{30} , 3. N_{60} , 4. P_{60} , 5. P_{90} , 6. K_{90} , 7. K_{120} , 8. $N_{30}P_{60}$, 9. $N_{60}P_{90}$, 10. $N_{30}K_{90}$, 11. $N_{60}K_{120}$ 12. $P_{60}K_{90}$, 13. $P_{90}K_{120}$, 14. $N_{30}P_{60}K_{90}$, 15. $N_{30}P_{90}K_{120}$, 16. $N_{60}P_{60}K_{90}$, 17. $N_{60}P_{90}K_{120}$.

При проведении исследований применяли общепринятые в агрономической науке методики закладки и проведения полевых опытов [6, 7, 8].

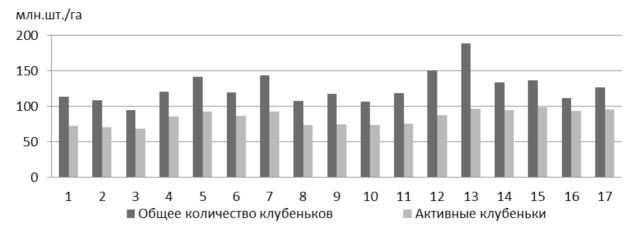


Рис. 1 - Количество клубеньков на корнях клевера 1-го г.п. (фаза бутонизации). 1. Без удобрений (контроль), 2. $N_{30'}$ 3. $N_{60'}$ 4. $P_{60'}$ 5. $P_{90'}$ 6. $K_{90'}$ 7. $K_{120'}$ 8. $N_{30}P_{60'}$ 9. $N_{60}P_{90'}$ 10. $N_{30}K_{90'}$ 11. $N_{60}K_{120}$ 12. $P_{60}K_{90'}$ 13. $P_{90}K_{120'}$ 14. $N_{30}P_{60}K_{90'}$ 15. $N_{30}P_{90}K_{120'}$ 16. $N_{60}P_{60}K_{90'}$ 17. $N_{60}P_{90}K_{120'}$

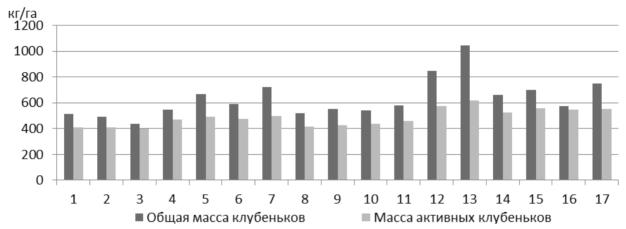


Рис. 2 - Масса клубеньков на корнях клевера паннонского 1-го г.п (фаза бутонизации). 1. Без удобрений (контроль), 2. $N_{30'}$ 3. $N_{60'}$ 4. $P_{60'}$ 5. $P_{90'}$ 6. $K_{90'}$ 7. $K_{120'}$ 8. $N_{30}P_{60'}$ 9. $N_{60}P_{90'}$ 10. $N_{30}K_{90'}$ 11. $N_{60}K_{120}$ 12. $P_{60}K_{90'}$ 13. $P_{90}K_{120'}$ 14. $N_{30}P_{60}K_{90'}$ 15. $N_{30}P_{90}K_{120'}$ 16. $N_{60}P_{60}K_{90'}$ 17. $N_{60}P_{90}K_{120'}$

Изучение формирования агроценоза клевера паннонского показало, что полнота всходов, число сохранившихся растений в конце вегетации и после перезимовки были выше на удобренных вариантах.

Биологическая фиксация воздуха микроорганизмами - уникальный биологический процесс. При активной азотфиксации около 30% углеводов, синтезированных растениями в процессе фотосинтеза, затрачивается клубеньками на связывание азота воздуха. Поэтому все приемы, улучшающие рост и развитие клевера паннонского, повышающие симбиотическую деятельность посевов, будут способствовать увеличению количества азота, усвоенного из воздуха [9, 10, 11, 12].

Величину симбиотического аппарата достаточно полно характеризуют количе-

ство и масса клубеньков. Установлено, что фосфорно-калийные удобрения оказали положительное влияние на формирование симбиотического аппарата клевера паннонского. Так, общее количество клубеньков на удобренных вариантах увеличилось на 29,6 млн. шт./га (25,9 %), активных — 19,8 млн. шт./га (27,3 %). Наибольшее общее количество клубеньков 1045,4 млн.шт./га с массой 188,4 кг/га и 618,2 кг/га и 96,8 кг/га активных сформировалось в фазу бутонизации в варианте $P_{90}K_{120}$ (рис. 1, 2).

Тенденция влияния азота и фосфорнокалийных удобрений на общий и активный симбиотический потенциал аналогична динамике количества и массы клубеньков. На минеральном фоне в фазу ветвления - бутонизации ОСП максимально увеличился на

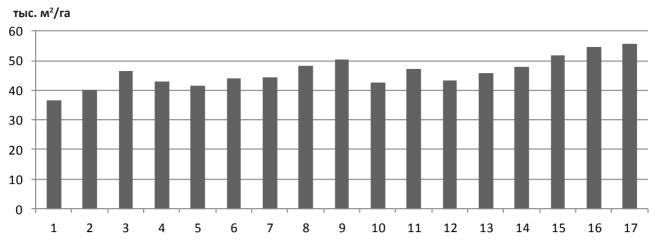


Рис. 3- Площадь листьев клевера паннонского 1 г. п.,

1. Без удобрений (контроль), 2. $N_{30'}$ 3. $N_{60'}$ 4. $P_{60'}$ 5. $P_{90'}$ 6. $K_{90'}$ 7. $K_{120'}$ 8. $N_{30}P_{60'}$ 9. $N_{60}P_{90'}$ 10. $N_{30}K_{90'}$ 11. $N_{60}K_{120}$ 12. $P_{60}K_{90'}$ 13. $P_{90}K_{120'}$ 14. $N_{30}P_{60}K_{90'}$ 15. $N_{30}P_{90}K_{120'}$ 16. $N_{60}P_{60}K_{90'}$ 17. $N_{60}P_{90}K_{120}$

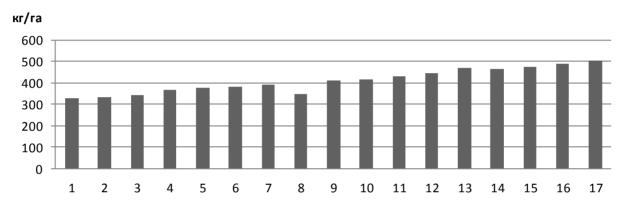


Рис. 4 – Урожайность семян клевера паннонского 1 г. п.

1. Без удобрений (контроль), 2. $N_{30'}$ 3. $N_{60'}$ 4. $P_{60'}$ 5. $P_{90'}$ 6. $K_{90'}$ 7. $K_{120'}$ 8. $N_{30}P_{60'}$ 9. $N_{60}P_{90'}$ 10. $N_{30}K_{90'}$ 11. $N_{60}K_{120}$ 12. $P_{60}K_{90'}$ 13. $P_{90}K_{120'}$ 14. $N_{30}P_{60}K_{90'}$ 15. $N_{30}P_{90}K_{120'}$ 16. $N_{60}P_{60}K_{90'}$ 17. $N_{60}P_{90}K_{120'}$

102,8%, АСП на - 50,3%. Наибольший общий и активный симбиотический потенциал сформировался на фоне P_{90} K_{120} : в фазу ветвления - бутонизации 38228 кг дней/га и 22768 кг дней/га, бутонизации - цветения - 24701 кг дней/га и 14352 кг дней/га, цветения - созревания -12705 кг дней/га и 6648 кг дней/га соответственно.

Фотосинтез основной процесс питания растений. Регулирование фотосинтетической деятельности растений с помощью минерального питания представляет большой интерес для формирования урожая. Показатели площади листьев, продолжительность их работы и накопление сухой биомассы определяют продуктивность фотосинтетической деятельности посевов. Площадь листьев является одним из важных показателей, характеризующих фотосинтетическую деятельность

растений, и урожай тесно связан именно с размерами площади листьев [13].

Агроценоз клевера паннонского первого года жизни на фоне $N_{60}P_{90}K_{120}$ характеризовался наибольшими показателями фотосинтетического потенциала 2,65 млн. M^2 дн./га. На фоне $P_{60}K_{90}$ показатели фотосинтетического потенциала (1,91 млн. M^2 дн./га.) были выше, чем в контроле на 25,6%, при увеличении дозы до $P_{90}K_{120}$ (2,06 млн. M^2 дн./га.) — на 35,5%. При внесении азота, фосфора, калия показатели чистой продуктивности фотосинтеза увеличились на 0,04 — 0,78 г/ M^2 сутки.

Анализ основных показателей фотосинтетической деятельности посевов клевера паннонского 1-го года пользования показывает, что наиболее продуктивно работали посевы на удобренных вариантах. Так, площадь листьев клевера паннонского составила по

вариантам опыта 36,7 — 55,8 тыс. $\text{м}^2/\text{га}$. Максимальную площадь листьев (55,8 тыс. $\text{м}^2/\text{га}$) сформировали посевы клевера паннонского при внесении минеральных удобрений в дозе $N_{50}P_{90}K_{120}$ (рис. 3).

Анализ экономической эффективности возделывания клевера паннонского на разных фонах минерального питания показал, что затраты составили 29,26-62,86 тыс. руб./га в контроле 26,5 тыс. руб./га, максимальный условный чистый доход 43,2 тыс. руб. получен при внесении N_{60} P_{60} K_{90} , уровень рентабельности 146,2%.

Таким образом, результаты наших исследований, проведенных на выщелоченном черноземе, показывают, что фосфорно-калийные удобрения оказывают статистически достоверное влияние на увеличение семенной продуктивности клевера паннонского.

Библиографический список

- 1. Новоселова, А.С. Селекция и семеноводство многолетних трав / А.С. Новоселова и др. Москва, 2005. 375 с.
- 2. Новоселов, Ю.К. Состояние и пути увеличения производства кормов и повышение их качества в полевом кормопроизводстве / Ю.К. Новоселов // Адаптивное кормопроизводство: проблемы и решения (к 80- летию Всероссийского научно-исследовательского института кормов имени В.Р. Вильямса). М.: Росинформагротех, 2002, с. 105-111.
- 3. Кшникаткина, А.Н. Продуктивность козлятника восточного в зависимости от доз минеральных удобрений / А.Н. Кшникаткина, О.А. Тимошкин // Кормопроизводство − 2006. № 7.- С. 17-21.
 - 4. Персикова, Г.Ф. Урожай сена и семян

- клевера лугового в зависимости от способов посева и условий питания /Г.Ф. Персикова // Эффективность удобрений и плодородие почв. Белорус. с-х. акад. Горки, 1991.- С. 70-77.
- 5. Жаринов, В.И. Влияние минеральных удобрений на урожайность семян клевера / В.И. Жаринов, А.С. Пипко, Г.Я. Лазовская // Тр. Харьк. СХИ. 1977. Т. 230. С. 87—91.
- 6. Доспехов, Б.А. Методика полевого опыта. М.: Колос, 1989. 335 с.
- 7. Посыпанов, Г.С. Методические аспекты изучения симбиотического аппарата бобовых культур в полевых условиях / Г.С. Посыпанов // Известия ТСХА. 1983. №5. С. 17-26.
- 8. Методическое указание по проведению полевых опытов с кормовыми культурами / Ю. К. Новоселов и др. М.: ВИК, 1987. 198 с.
- 9. Дозоров, А.В Агротехника сои в Ульяновской области /А.В. Дозоров // Кормопроизводство. 2000. №3. С. 19.
- 10. Дозоров, А.В. Оптимизация продукционного процесса гороха и сои в лесостепи Поволжья. Диссертация на соискание ученой степени доктора сельскохозяйственных наук / Ульяновск, 2003.- 333 с.
- 11. Сергеев, П.А. Культура клевера на корм и семена / П.А. Сергеев, Г.Д. Харьков, А.С. Новоселова. М.: Колос, 1973. 286 с.
- 12. Спасов, В.П. Накопление азота клевером луговым при внесении фосфорных удобрений / В.П. Спасов, С.В. Грислис, Н.И. Арзамасцев // Кормопроизводство 2001 \mathbb{N}° 9 С. 24-25.
- 13. Ничипорович, А.А. Фотосинтез и теория получения высоких урожаев / А. А. Ничипорович. М.: АН СССР, 1961. 193 с.